Journal of Mathematical Biology

, Volume 48, Issue 3, pp 243–274 | Cite as

Multiple-spike waves in a one-dimensional integrate-and-fire neural network

  • Remus Oşan
  • Rodica Curtu
  • Jonathan Rubin
  • Bard Ermentrout


This paper builds on the past study of single-spike waves in one-dimensional integrate-and-fire networks to provide a framework for the study of waves with arbitrary (finite or countably infinite) collections of spike times. Based on this framework, we prove an existence theorem for single-spike traveling waves, and we combine analysis and numerics to study two-spike traveling waves, periodic traveling waves, and general infinite spike trains. For a fixed wave speed, finite-spike waves, periodic waves, and other infinite-spike waves may all occur, and we discuss the relationships among them. We also relate the waves considered analytically to waves generated in numerical simulations by the transient application of localized excitation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amari, S.-I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cyber. 27, 77–87 (1977)MATHGoogle Scholar
  2. 2.
    Bressloff, P.C.: Synaptically generated wave propagation in excitable neural media. Phys. Rev. Lett. 82, 2979–2982 (1999)CrossRefGoogle Scholar
  3. 3.
    Bressloff, P.C.: Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. J. Math. Biol. 40, 169–198 (2000)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Chagnac-Amitai, Y., Connors, B.W.: Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J. Neurophysiol. 61, 747–758 (1989)Google Scholar
  5. 5.
    Chervin, R.D., Pierce, P.A., Connors, B.W.: Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J. Neurophysiol. 60, 1695–1713 (1988)Google Scholar
  6. 6.
    Dayan, P., Abbott, L.: Theoretical Neuroscience. MIT Press, Cambridge, MA, 2001Google Scholar
  7. 7.
    Ermentrout, G.B.: The analysis of synaptically generated traveling waves. J. Comp. Neurosci. 5, 191–208 (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Ermentrout, G.B., McLeod, J.B.: Existence and uniqueness of traveling waves for a neural network. Proc. Roy. Soc. Edinburgh 123A, 461–478 (1993)MathSciNetMATHGoogle Scholar
  9. 9.
    Golomb, D., Amitai, Y.: Propagating neuronal discharges in neocortical slices: Computational and experimental study. J. Neurophysiol. 78, 1199–1211 (1997)Google Scholar
  10. 10.
    Golomb, D., Ermentrout, G.B.: Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity. Proc. Natl. Acad. Sci. USA 96, 13480–13485 (1999)CrossRefGoogle Scholar
  11. 11.
    Golomb, D., Ermentrout, G.B.: Effects of delay on the type and velocity of travelling pulses in neuronal networks with spatially decaying connectivity. Network 11, 221–246 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Idiart, M.A.P., Abbott, L.F.: Propagation of excitation in neural network models. Network 4, 285–294 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    Kim, U., Bal., T., McCormick, D.A.: Spindle waves are propagating synchronized oscillations in the ferret LGN in vitro. J. Neurophysiol. 74, 1301–1323 (1995)Google Scholar
  14. 14.
    Oşan, R., Rubin, J., Curtu R., Ermentrout, G.B.: Periodic traveling waves in a one-dimensional integrate-and-fire neural network. Neurocomputing 52–54, 869–875 (2003)Google Scholar
  15. 15.
    Oşan, R., Ermentrout, G.B.: Two dimensional synaptically generated traveling waves in a theta-neuron neural network. Neurocomputing 38–40, 789–795 (2001)Google Scholar
  16. 16.
    Oşan, R., Ermentrout, G.B.: The evolution of synaptically generated waves in one- and two-dimensional domains. Phys. D 163, 217–235 (2002)MathSciNetGoogle Scholar
  17. 17.
    Oşan, R., Rubin, J., Ermentrout, G.B.: Regular traveling waves in a one-dimensional network of theta neurons. SIAM J. Appl. Math. 62, 1197–1221 (2002)CrossRefGoogle Scholar
  18. 18.
    Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math. 62, 206–225 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Pinto, D.: Personal communicationGoogle Scholar
  20. 20.
    Rinzel, J., Keller, J.B.: Traveling wave solutions of a nerve conduction equation. Biophys. J. 13, 1313–1337 (1973)Google Scholar
  21. 21.
    Stich, M.: Target patterns and pacemakers in reaction-diffusion systems. Ph.D. Dissertation, Technical University Berlin, 2002Google Scholar
  22. 22.
    Traub, R.D., Jefferys, J.G.R., Miles, R.: Analysis of propagation of disinhibition-induced after-discharges along the guinea-pig hippocampal slice in vitro. J. Physiol. Lond. 472, 267–287 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Remus Oşan
    • 1
  • Rodica Curtu
    • 1
  • Jonathan Rubin
    • 1
  • Bard Ermentrout
    • 1
  1. 1.Department of MathematicsUniversity of PittsburghUSA

Personalised recommendations