Advertisement

Journal of Mathematical Biology

, Volume 47, Issue 3, pp 270–294 | Cite as

A delay differential equation model for tumor growth

  • Minaya VillasanaEmail author
  • Ami Radunskaya
Article

Abstract.

We present a competition model of tumor growth that includes the immune system response and a cycle-phase-specific drug. The model considers three populations: Immune system, population of tumor cells during interphase and population of tumor during mitosis. Delay differential equations are used to model the system to take into account the phases of the cell cycle. We analyze the stability of the system and prove a theorem based on the argument principle to determine the stability of a fixed point and show that the stability may depend on the delay. We show theoretically and through numerical simulations that periodic solutions may arise through Hopf Bifurcations.

Keywords

 Cycle-phase-specific drugs Delay differential equations Tumor growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hardman, J., Linbird, L.: Goodman and Gilman's The Pharmacological basis of therapeutics. Mc Graw Hill, Health Profesion Division, 9 edition, 1996Google Scholar
  2. 2.
    Panetta, J.C., Adam, J.: A mathematical model of cycle-specific chemotherapy. Mathl. Compt. Modeling 22, 67–82 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Kirschner, D., Panetta, J.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (1998)Google Scholar
  4. 4.
    Kuznetsov, V., Makalkin, I., Taylor, M., Perelson, A.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)zbMATHGoogle Scholar
  5. 5.
    Baker, C.T.H., Bocharov, G.A., Paul, C.A.H., Rihan, F.A.: Modeling and analysis of time-lags in some basic patterns of cell proliferation. J. Math. Biol. 37, 341–371 (1998)Google Scholar
  6. 6.
    Knolle, H.: Cell Kinetic Modeling and the Chemotherapy of Cancer. volume 75 of Lecture Notes in Biomathematics. Springer-Verlag, 1988Google Scholar
  7. 7.
    Eisen.: Mathematical Models in Cell Biology and Cancer Chemotherapy. volume 30 of Lecture Notes in Biomathematics, Springer-Verlag 1979Google Scholar
  8. 8.
    Tubiana, M., Malaise, E.: Comparison of cell proliferation kinetics in human and experimental tumors: response to irradiation. Cancer Treatment Reports 60, 1887–1895 (1976)Google Scholar
  9. 9.
    Birkhead, B., Rankin, E., Gallivan, S., Dones, L., Rubens, R.: A mathematical model of the development of drug resistance to cancer chemotherapy. Eur. J. Cancer Clin. Oncol. 23, 1421–1427 (1987)Google Scholar
  10. 10.
    de Pillis, L., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. to appear 2003Google Scholar
  11. 11.
    Panetta, J.: A mathematical model of periodically pulsed chemotherapy: Tumor Metastasis in a competitive environment. Bull. Math. Biol. 58, 425–447 (1996)zbMATHGoogle Scholar
  12. 12.
    Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. Br. Cancer 78, 382–387 (1998)Google Scholar
  13. 13.
    Norton, L., Simon, R.: Predicting the course of gompertzian growth. Nature 264, 542–545 (1976)Google Scholar
  14. 14.
    Norton, L.: A gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)Google Scholar
  15. 15.
    Villasana, M., Ochoa, G.: An optimal control problem for cancer cycle-phase-specific chemotherapy, to appear, IEEE TEC Journal, 2004Google Scholar
  16. 16.
    Steel, G.: Cell los as a factor in the growth rate of human tumours. Europ. J. Cancer 3, 381–387 (1967)Google Scholar
  17. 17.
    Zagury, D., Bernard, J., Jeannesson, P., Thiernesse, N., Cerottini, J.: Studies on the mechanism of T-cell mediated lysis at the single effector cell level. The J. Immunol. 123(4), 1604–1609 (1979)Google Scholar
  18. 18.
    Garcia-Peñarrubia, P., Bankhurst, A.D.: Kinetic analysis of effector cell recycling and effector-target binding capacity in a model ofcell-mediated cytotoxicity. J. Immunol. 143, 2101–2111 (1989)Google Scholar
  19. 19.
    Robertson, M.J., Williams, B.T., Christopherson, K.II., Brahmi, Z., Hromas, R.: Regulation of human natural killer cell migration and proliferation by the exodus subfamily of cc chemokines. Cellular Immunol. 199, 8–14 (2000)CrossRefGoogle Scholar
  20. 20.
    Jondal, M., Ullberg, M., Merrill, J.: Interferon-induced nk augmentation in humans. an analysis of target recognition, effector cell recruitment and effector cell recycling. Scand. J. Immunol. 14, 285–292 (1981)Google Scholar
  21. 21.
    Petersson, E., Hedlund, G.: Proliferation and Differentiation of alloselective nk cellsafter alloimmunization evidence for an Adaptive nk response. Cellular Immunol. 197, 10–18 (1999)CrossRefGoogle Scholar
  22. 22.
    Baserga, R.: editor. The Cell Cycle and Cancer. volume 1 of The Biochemistry of Disease A Molecular Approach to Cell Pathology, pages 358–387. Marcel Dekker, 1971Google Scholar
  23. 23.
    Bellman, R., Cooke, K.: Differential-Difference Equations. Academic Press, 1963Google Scholar
  24. 24.
    Hale, J., Verduyn Lunel, S.: Introduction to Functional Differential Equations, volume 99 of Applied Mathematical Sciences. Springer-Verlag, 1993Google Scholar
  25. 25.
    Mahaffy, J.: A test for stability of linear differential equations. Quart. Appl. Math. 40, 193–202 (1982)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cooke, K., van den Driessche, P.: On the zeroes of some transcendental equations. Funkcialaj Ekvacioj 29, 77–90 (1986)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bo, H.: To determine that all the roots of a trascendental polynomial have negative real parts. Chinese Ann. Math. 3, 373–392 (1997)Google Scholar
  28. 28.
    Thomlinson, R.: Measurement and management of carcinoma of the breast. Clin. Radiol. 33, 481–492 (1982)Google Scholar
  29. 29.
    Shampine, L.F., Thompson, S.: Solving ddes with Matlab http://www.runet.edu/~thompson/webddes/index.htmlGoogle Scholar
  30. 30.
    Afenya, E., Bentil, D.: Some perspectives on modeling leukemia. Math. Biosci. 150, 113–130 (1998)CrossRefzbMATHGoogle Scholar
  31. 31.
    Mahaffy, J.: Periodic solutions for certain protein models. J. Math. Anal. Appl. 74, 72–105 (1980)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Departamento de Cómputo Científico y EstadísticaUniversidad Simón BolivarVenezuelaUSA
  2. 2.Mathematics DepartmentPomona CollegeUSA

Personalised recommendations