Advertisement

Journal of Mathematical Biology

, Volume 47, Issue 6, pp 483–517 | Cite as

The evolution of dispersal

  • V. Hutson
  • S. Martinez
  • K. Mischaikow
  • G.T. VickersEmail author
Article

Abstract.

A non-local model for dispersal with continuous time and space is carefully justified and discussed. The necessary mathematical background is developed and we point out some interesting and challenging problems. While the basic model is not new, a ‘spread’ parameter (effectively the width of the dispersal kernel) has been introduced along with a conventional rate paramter, and we compare their competitive advantages and disadvantages in a spatially heterogeneous environment. We show that, as in the case of reaction-diffusion models, for fixed spread slower rates of diffusion are always optimal. However, fixing the dispersal rate and varying the spread while assuming a constant cost of dispersal leads to more complicated results. For example, in a fairly general setting given two phenotypes with different, but small spread, the smaller spread is selected while in the case of large spread the larger spread is selected.

Keywords

General Setting Competitive Advantage Slow Rate Dispersal Rate Continuous Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chmaj, A., Ren, X.: Homoclinic solutions of an integral equation: existence and stability. J. Diff. Eqns. 155, 17–43 (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dieckmann, U., Law, R., Metz, J. The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, 2000Google Scholar
  3. 3.
    Dieckmann, U., O’Hara, B., Weisser, W.: The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999)Google Scholar
  4. 4.
    Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates. J. Math. Biol. 37, 61–83 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Doebli, M., Ruxton, G.: Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution 51, 1730–1741 (1997)Google Scholar
  6. 6.
    Duncan, D., Grinfeld, M., Stoleriu, I.: Coarsening in an integro-differential model of phase transitions. Euro. J. Appl. Math. 11, 511–572 (2000)Google Scholar
  7. 7.
    Feduccia, A.: The Origin and Evolution of Birds. Yale University Press, New Haven. 1996Google Scholar
  8. 8.
    Ferriere, R., Belthoff, J., Olivieri, I., Krackow, S.: Evolving dispersal: where to go next? Trends Ecol. Evol. 15, 5–7 (2000)CrossRefGoogle Scholar
  9. 9.
    Fife, P.: Mathematical Aspects of Reaction-Diffusion Equations, Lecture Notes in Mathematics. 28, Springer-Verlag, New York, 1979Google Scholar
  10. 10.
    Fife, P.: An integro-differential analog of semilinear parabolic PDE’s. In: Partial Differential Equations and Applications, eds. P. Marcellini, G. Talent and E. Vesenti, Lecture Notes in Pure and Applied Mathematics 1996, 177, Marcel Dekker.Google Scholar
  11. 11.
    Fife, P.: Clines and material interfaces with non-local interaction. In: Nonlinear Problems in Applied Mathematics, eds. T.S. Angell, L. Pamela Cook, R.E. Kleinman and W.E. Olmstead 1996, 134–149, SIAM Publications.Google Scholar
  12. 12.
    Hadeler, K.P.: Reaction-transport systems in biological modelling. In: Mathematics Inspired by Biology, eds. V. Capasso and O. Diekmann, Lecture Notes Mathematics 1999, 1714, Springer-Verlag, New YorkGoogle Scholar
  13. 13.
    Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Pop. Biol. 24, 244–251 (1983)zbMATHGoogle Scholar
  14. 14.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin. 1981Google Scholar
  15. 15.
    Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics, 247. Longman, New York, 1991Google Scholar
  16. 16.
    Hofbauer, J., Sigmund, K.: Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3, 75–79 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Holt, R., McPeek, M.: Chaotic population dynamics favours the evolution of dispersal. Amer. Nat. 148, 709–718 (1996)CrossRefGoogle Scholar
  18. 18.
    Hutson, V., Pym, J.S.: Applications of functional analysis and operator theory. Academic Press, London. 1980Google Scholar
  19. 19.
    Hutson, V., Mischaikow, K., Poláčik, P.: The evolution of dispersal rates in a heterogeneous, time-periodic environment. J. Math. Biol. 42, 501–533 (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Johnson, M., Gaines, M.: The evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann. Rev. Ecol. Syst. 21, 449–480 (1990)CrossRefGoogle Scholar
  21. 21.
    Kot, M., Schaffer, W.: Discrete-time growth-dispersal models. Math. Biosc. 80, 109–136 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Kot, M., Lewis, M., van den Driessche, P.: Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996)Google Scholar
  23. 23.
    Leung, A.W.: Systems of partial differential equations. Kluwer, Dordrecht. 1989Google Scholar
  24. 24.
    McPeek, M., Holt, R.: The evolution of dispersal in spatial and temporally varying environments. Amer. Nat. 140, 1010–1027 (1992)CrossRefGoogle Scholar
  25. 25.
    Méndez, V., Pujol, T., Fort, J.: Dispersal probability distributions and the wave-front speed problem. Phys. Rev. E 65, 1–6 (2002)Google Scholar
  26. 26.
    Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S.: Adaptive dynamics: A geometrical study of the consequences of nearly faithful reproduction. In: S.J. van Strien, S.M. Verduyn Lunel (eds), Stochastic and Spatial Structures of Dynamical Systems, KNAW Verhandelingen afd. Natuurkunde Eerste Reeks deel 45. North Holland, Amsterdam, Netherlands 1996, pp. 183–231Google Scholar
  27. 27.
    Moody, M.: The evolution of migration in subdivided populations I. Haploids. J. Theor. Biol. 131, 1–13 (1988)Google Scholar
  28. 28.
    Moody, M., Ueda, M.: A diffusion model for the evolution of migration. Preprint.Google Scholar
  29. 29.
    Murray, J.D.: Mathematical Biology, Springer-Verlag, New York. 1989Google Scholar
  30. 30.
    Nagylaki, T.: The diffusion model for migration and selection. In: Some Mathematical Questions in Biology: Models in Population Biology ed. A. Hastings , Lectures on Mathematics in the Life Sciences, 20, 1989Google Scholar
  31. 31.
    Neuhauser, N.: Mathematical challenges in spatial ecology. Notices of the AMS 1304–1314 (2001)Google Scholar
  32. 32.
    Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)Google Scholar
  33. 33.
    Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992Google Scholar
  34. 34.
    Roughgarden, J.: Theory of Population Genetics and Evolutionary Ecology: An Introduction. Macmillan, New York. 1979Google Scholar
  35. 35.
    Smith, H.L.: Monotone dynamical systems. Amer. Math. Soc., Providence, R.I. 1995Google Scholar
  36. 36.
    Taylor, A.E.: Introduction to functional analysis. Wiley, London. 1958Google Scholar
  37. 37.
    Travis, J.M.J., Dytham, C.: Habitat persistence, habitat availability and the evolution of dispersal. Proc. Roy. Soc. Lon. B 266, 723–728 (1999)CrossRefGoogle Scholar
  38. 38.
    Wang, X.: Metastability and patterns in a convolution model for phase transitions. J. Diff. Eqns. 183, 434–461 (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Weinberger, H.: Asymptotic behaviour of a model in population genetics. In: Chadan, J. (ed.) Nonlinear PDE’s and Applications, Springer Lecture Notes 648, 47–96 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • V. Hutson
    • 1
  • S. Martinez
    • 2
  • K. Mischaikow
    • 3
  • G.T. Vickers
    • 4
    Email author
  1. 1.Department of Applied MathematicsThe University of SheffieldSheffieldU.K
  2. 2.Departamento de Ingeniería MatemáticaUniversidad de ChileSantiagoChile
  3. 3.Department of MathematicsGeorgia Institute of TechnologyAtlantaU.S.A
  4. 4.Department of Applied MathematicsThe University of SheffieldSheffieldU.K

Personalised recommendations