Skip to main content
Log in

Endophytic Fungi Assures Tropical Forage Grass Growth by Water Stress Tolerances

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Forage plants is the base of beef and dairy cattle production. While water stress limits agricultural production worldwide, endophytic fungi can play a beneficial role for plants, such as tolerance to biotic and abiotic stresses. The objective of this work was to evaluate the effect of inoculation of the endophytic fungi Paraconiothyrium estuarinum (CML 3695, CML 3696, CML 3699) and Paraconiothyrium cyclothyrioides (CML 3697, CML 3698) on agronomic characteristics of two forage species, Brachiaria brizantha (A. Rich) Stapf. cv. Marandu and Megathyrsus maximus Jacq. cv. BRS Mombaça, under different available water capacities. The treatments simulated a long drought period (LDH) equivalent to 10% of the available water capacity (AWC) and simulated 7 (7 DH) and 14 days of drought (14 DH) without water supply. The grasses were evaluated for length and dry weight of shoots and roots. All treatments reached humidity below the permanent wilting point (PWP) and the highest variation in soil moisture was observed at 14 DH, for both grass species. The endophytic fungi promoted an average 15% increase in shoot length (SL) for B. brizantha and an increase of 34% for SL, 266% for Dry Shoot Mass (SDM), and 340% for Dry Root Mass (RDM) for M. maximus treated with P. estuarinum (CML 3699) at 7 DH. Paraconiothyrium estuarinum (CML 3699) guaranteed the highest tolerance to water deficit and sustainable growth performance to both tested grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  2. Hardoim PR, Van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  Google Scholar 

  3. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845. https://doi.org/10.1007/s00253-011-3270-y

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. https://doi.org/10.1038/ismej.2007.106

    Article  PubMed  Google Scholar 

  5. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191. https://doi.org/10.4161/psb.6.2.14146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544. https://doi.org/10.3389/fmicb.2018.00544

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maia NC, Souza PNC, Godinho BTV, Moreira SI, Abreu LM, Jank L, Cardoso PG (2018) Fungal endophytes of Panicum maximum and Pennisetum purpureum: isolation, identification, and determination of antifungal potential. Rev Bras Zootec 47:e20170183. https://doi.org/10.1590/rbz4720170183

    Article  Google Scholar 

  8. Gama DS, Santos IAFM, Abreu LM, Medeiros FHV, Duarte WF, Cardoso PG (2020) Endophytic fungi from Brachiaria grasses in Brazil and preliminary screening of Sclerotinia sclerotiorum antagonists. Sci Agric 77:e20180210. https://doi.org/10.1590/1678-992x-2018-0210

    Article  CAS  Google Scholar 

  9. Alves NM, Guimarães RA, Guimarães SSC, Faria AF, Santos IAFM, Medeiros FHV, Jank L, Cardoso PG (2021) A Trojan horse approach for white mold biocontrol: Paraconiothyrium endophytes promotes grass growth and inhibits Sclerotinia sclerotiorum. Biol Control 160:e104685. https://doi.org/10.1016/j.biocontrol.2021.104685

    Article  Google Scholar 

  10. Kelemu S, White JF Jr, Takayama Y (2001) An endophyte of the tropical forage grass Brachiaria brizantha: isolating, identifying, and characterizing the fungus, and determining its antimycotic properties. Can J Microbiol 47:55–62. https://doi.org/10.1139/cjm-47-1-55

    Article  CAS  PubMed  Google Scholar 

  11. Kelemu S, Dongyi H, Guixiu H, Takayama Y (2003) Detecting and differentiating Acremonium implicatum: developing a PCR based method for an endophytic fungus associated with the genus Brachiaria. Mol Plant Pathol 4:115–118. https://doi.org/10.1046/j.1364-3703.2003.00157.x

    Article  CAS  PubMed  Google Scholar 

  12. Kelemu S, Cardona C, Segura G (2004) Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume. Plant Physiol Biochem 42:867–873. https://doi.org/10.1016/j.plaphy.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  13. Clay K, Schardl C (2002) Evolucionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  Google Scholar 

  14. Schardl CL, Wilkinson HH (2000) Microbial endophytes: hybridization and cospeciation hypothesis for the evolution of grass endophytes. Microbial Endophytes. Bacon CW, White JF. (eds.). New York: Marcel Dekker. pp. 63–83.

  15. Bayat F, Mirlohi A, Khodambashi M (2009) Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics Culture. Russ J Plant Physiol 56(4):510–516. https://doi.org/10.1134/S1021443709040104

    Article  CAS  Google Scholar 

  16. Oberhofer M, Güsewell S, Leuchtmann A (2013) Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol 201:242–253. https://doi.org/10.1111/nph.12496

    Article  PubMed  Google Scholar 

  17. Abiec (Associação Brasileira das Indústrias Exportadoras de Carne) (2019) Estatística: Balanço da Pecuária. (Livestock statistical balance). http://www.abiec.com.br/texto.asp?id=8. Accessed 23 March 2019.

  18. Valle CB, Jank L, Resende RMS (2009) O melhoramento de forrageiras tropicais no Brasil. Rev Ceres 56:460–472

    Google Scholar 

  19. Jank L, Resende RMS, Valle CB (2008) Melhoramento genético de Panicum maximum. In: Resende RMS, Valle, CB, Jank L. Melhoramento de forrageiras tropicais. eds. Embrapa, Campo Grande. pp. 55–87.

  20. Miles JW, Valle CBdo (1996) Manipulation of apomix in Brachiaria breeding. In: Miles JW, Mass BL, Valle CBdo (ed.). Brachiaria: biology, agronomy and improvement. Cali: CIAT. 11:164–177.

  21. Savidan YH, Jank L, Costa JC, Valle CB (1989) Breeding Panicum maximum in Brazil: genetic resources, modes of reproduction and breeding procedures. Euphytica 41:107–112

    Article  Google Scholar 

  22. MapBiomas—MapBiomas Project (2019) Collection 5 (1985–2019) of the Annual Land Use Land Cover Maps of Brazil. https://plataforma.brasil.mapbiomas.org. Accessed 7 June 2021.

  23. Guarnieri A, Costa KAP, Severiano EC, Silva AG, Oliveira SS, Santos CB (2019) Agronomic and productive characteristics of maize and Paiaguas palisadegrass in integrated production systems. Semina: Cienc Agrar. 40:1185–1198. https://doi.org/10.5433/1679-0359.2019v40n3p1185

  24. Verkley GJM, Silva M, Wicklow DT, Crous PW (2004) Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol 50:323–335

    Google Scholar 

  25. Verkley GJM, Dukik K, Renfurm R, Göker M, Stielow JB (2014) Novel genera and species of Coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 32:25–51. https://doi.org/10.3767/003158514X679191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de Métodos de Análise de Solo. Embrapa Solos, Brasília.

  27. Klute A (1986) Water retention: laboratory methods. In: Klute A (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 563–596

    Chapter  Google Scholar 

  28. Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533. https://doi.org/10.1046/j.1399-3054.2003.00196.x

    Article  CAS  Google Scholar 

  29. Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425. https://doi.org/10.1016/j.jplph.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  30. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. UN-FAO, Rome, Italy

  31. Milani M, Marzo A, Toscano A, Consoli S, Cirelli GL, Ventura D, Barbagallo S (2019) Evapotranspiration from horizontal subsurface flow constructed wetlands planted with different perennial plant species. Water 11:2159. https://doi.org/10.3390/w11102159

    Article  CAS  Google Scholar 

  32. Oliveira AS, Nogueira MCJA, Sanches L, Nogueira JS (2013) Variáveis meteorológicas e cobertura vegetal de espécies arbóreas em praças urbanas em Cuiabá. Brasil Rev Bras Meteorol 28:389–400. https://doi.org/10.1590/S0102-77862013000400005

    Article  Google Scholar 

  33. Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31. https://doi.org/10.1016/j.fcr.2008.03.002

    Article  Google Scholar 

  34. Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants–an overview. In: Aroca R. (ed.). Plant responses to drought stress: from morphological to molecular features. Springer, Berlin Heidelberg. pp. 1–33. https://doi.org/10.1007/978-3-642-32653-0_1

  35. Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49. https://doi.org/10.1016/j.apsoil.2014.11.016

    Article  Google Scholar 

  36. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112:119–123. https://doi.org/10.1016/j.fcr.2009.03.009.

  37. Silva BM, Silva EA, Oliveira GC, Ferreira MM, Serafim ME (2014a) Plant-available soil water capacity: estimation methods and implications. Rev. Bras. Cienc. Solo. 38:464–476. https://doi.org/10.1590/S0100-06832014000200011

  38. Silva JFG, Gonçalves WG, Costa KAP, Neto JF, Brito MF, Silva FC, Severiano EC (2019) Crop-livestock integration and the physical resilience of a degraded Latosol. Semina: Cienc. Agrar. 40:2973–2990. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p2973.

  39. Silva JFG, Severiano EC, Costa KAP, Benites VM, Júnnyor WSG, Bento JC (2014) Chemical and physical-hydric characterisation of a red latosol after five years of management during the summer between-crop season. Rev Bras Cienc Solo 38:1576–1586. https://doi.org/10.1590/S0100-06832014000500023

    Article  Google Scholar 

  40. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation. Trends Plant Sci 11:610–617. https://doi.org/10.1016/j.tplants.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  41. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. https://doi.org/10.1093/aob/mcs293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114. https://doi.org/10.1016/j.agwat.2012.11.007

    Article  Google Scholar 

  43. Xia C, Christensen MJ, Zhang X, Nan Z (2018) Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant Soil 424:555–571. https://doi.org/10.1007/s11104-018-3561-5

    Article  CAS  Google Scholar 

  44. Santos PM, Da Cruz PG, Araujo LC, Pezzopane JRM, Valle CB, Gaspari-Pezzopane C (2013) Response mechanisms of Brachiaria brizantha cultivars to water deficit stress. Rev Bras Zootec 42:767–773. https://doi.org/10.1590/S1516-35982013001100001

    Article  Google Scholar 

  45. Huang B, Fu J (2000) Fotossíntese, respiração e alocação de carbono de duas gramíneas perenes de estação fria em resposta à secagem do solo na superfície. Plant Soil 227:17–26

    Article  CAS  Google Scholar 

  46. Kumari V, Germida J, Vujanovic V (2018) Legume endosymbionts: drought stress tolera nce in second-generation chickpea (Cicer arietinum) seeds. J Agro Crop Sci 204:529–540. https://doi.org/10.1111/jac.12283

    Article  CAS  Google Scholar 

  47. Chaves MM (1991) Effects of water deficit on carbon assimilation. Journal Exp Bot 42:1–46. https://doi.org/10.1093/jxb/42.1.1

    Article  CAS  Google Scholar 

  48. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. Photosynth Environ Springer, Netherlands 5:347–366. https://doi.org/10.1007/0-306-48135-9_14

    Article  CAS  Google Scholar 

  49. Combès A, Ndoye I, Bance C, Bruzaud J, Djediat C, Dupont J, Nay B, Prado S (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS One 7(10):e47313. https://doi.org/10.1371/journal.pone.0047313.

  50. Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2018) What is there in seeds? vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24. https://doi.org/10.3389/fpls.2018.00024

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG/CAG-APQ-02100-13) for financial support and scholarships.

Funding

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RPA, NAA, IAC, MISD, NAB, UJF, FHVM, BMS, and PGC. Data acquisition: IAC, MISD, and NAB. Data analysis: RPA, IAC, MISD, NAB, and BMS. Writing and editing: RPA, BMS, NAA, UJF, FHVM, and PGC.

Corresponding author

Correspondence to Bruno Montoani Silva.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest in this work.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

This manuscript is original and not published elsewhere. The authors discussed the results, read, and approved the final version of this manuscript. The authors also confirm that there are no ethical issues associated with the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, R.P., Alves, N.M., Costa, I.A. et al. Endophytic Fungi Assures Tropical Forage Grass Growth by Water Stress Tolerances. Curr Microbiol 78, 4060–4071 (2021). https://doi.org/10.1007/s00284-021-02672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02672-w

Navigation