Skip to main content

Advertisement

Log in

Identification of Hydrogen Gas Producing Anaerobic Bacteria Isolated from Sago Industrial Effluent

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, the biohydrogen production ability of isolated strains with sago industrial effluent in anaerobic batch fermentation was investigated. The bacteria responsible for the biohydrogen were isolated and identified as Clostridium sartagoforme NASGE 01 and Enterobacter cloacae NASGE 02. The volume of biohydrogen gas generated from the effluent was determined by gas chromatography (GC) and the organic acids formed during the biohydrogen production were determined by GC equipped with a flame ionization detector (GC—FID). In batch fermentation, C. sartagoforme NASGE 01 produced high amount of biogas (232 ± 11.02 mL/L) and biohydrogen (41.5%) followed by E. cloacae NASGE 02 produced 212.8 ± 8 mL/L biogas containing 31.5% of biohydrogen. Moreover, the hydrogen production potential (P), production rate (Rm) and lag time (λ) were analyzed from Gompertz non-linear curve fit model. The peak hydrogen yield was obtained with C. sartagoforme NASGE 01 was 158.7 mL/g glucose (1.26 mol H2/mol glucose) with the substrate degradation of 56.7%. Butyric acid was the major organic acid formed while hydrogen production with Clostridium sartagoforme NASGE 01 (176.4 mg/L) and Enterobacter cloacae NASGE 02 (285.1 mg/L). These experimental data demonstrated the feasibility of biohydrogen production using pure culture of anaerobic bacteria with sago industrial waste water as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature 426:353–363. https://doi.org/10.1038/nature02135

    Article  PubMed  CAS  Google Scholar 

  2. Evans RL (2007) Fueling our future—an introduction to sustainable energy. Cambridge University Press, Cambridge, p 180

    Book  Google Scholar 

  3. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811. https://doi.org/10.1016/j.ijhydene.2008.11.015

    Article  CAS  Google Scholar 

  4. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  CAS  Google Scholar 

  5. Nizzy AM, Kannan S (2014) Physicochemical properties of sago industrial effluents and their effects on seed germination. Int J Recent Sci Res 5(1):266–268

    Google Scholar 

  6. Nizzy AM, Kannan S, Anand SB (2019) Identification and characterization of bacteria isolated from sago industrial effluent. Indian J Exp Biol 57:427–434

    CAS  Google Scholar 

  7. Nasr M, Tawfik A, Ookowara S, Suzuki M (2013) Biological hydrogen production from starch waste water using a Novel Up-flow Anaerobic staged reactor. BioResources 8(4):4951–4968

    Article  Google Scholar 

  8. Banu JR, Kaliappan S, Beck D (2006) High rate anaerobic treatment of Sago wastewater using HUASB with PUF as carrier. Int J Environ Sci technol 3:69–77

    Article  CAS  Google Scholar 

  9. Muthukumaran VR (2011) Isolation and characterization of thiocyanate degrading bacteria from sago effluent contaminated site. Thesis submitted to Bharathidasan University, Tiruchirappalli, India, 84

  10. Mycin TR, Lenin M (2012) Morphometrical and biochemical changes on sunflower (Helianthus annuus L.) under sago factory effluent. Int J Environ Biol 2:115–120

    Google Scholar 

  11. Rajivgandhi MMC, Singaravelu M, Kiruthika R (2013) Biogas generation potential from tapioca processing industry wastes in Tamil Nadu. Int J Eng Res Technol 2:1981–1983

    Google Scholar 

  12. Su H, Cheng J, Zhou J, Song W, Chen K (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 34:1780–1786. https://doi.org/10.1016/j.ijhydene.2008.12.045

    Article  CAS  Google Scholar 

  13. Cappelletti BM, Reginatto V, Amante ER, Antonio RV (2011) Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy 36:3367–3372. https://doi.org/10.1016/j.renene.2011.05.015

    Article  CAS  Google Scholar 

  14. Shorgani NKN, Tibin EM, Ali E, Hamid AA, Yusoff WMW, Kalil MS (2013) Biohydrogen production from agroindustrial wastes via Clostridium saccharoperbutylacetonicum N1–4 (ATCC 13564). Clean Technol Environ Policy 16(1):11–21. https://doi.org/10.1007/s10098-013-0586-6

    Article  CAS  Google Scholar 

  15. Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW (2015) Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol 192:60–67. https://doi.org/10.1016/j.biortech.2015.05.034

    Article  PubMed  CAS  Google Scholar 

  16. Hamilton C, Calusinska M, Baptiste S, Masset J, Beckers L, Thonart P, Hiligsmann S (2018) Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009. Int J Hydrogen Energy 43(11):5451–5462. https://doi.org/10.1016/j.ijhydene.2017.12.162

    Article  CAS  Google Scholar 

  17. Turhal S, Turanbaev M, Argun H (2019) Hydrogen production from melon and watermelon mixture by dark fermentation. Int J Hydrogen Energy 44(34):18811–18817. https://doi.org/10.1016/j.ijhydene.2018.10.011

    Article  CAS  Google Scholar 

  18. Mishra P, Das D (2014) Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. Int J Hydrogen Energy 39(14):7496–7507. https://doi.org/10.1016/j.ijhydene.2013.08.100

    Article  CAS  Google Scholar 

  19. Sun L, Huang A, Gu W, Ma Y, Zhu D, Wang G (2015) Hydrogen production by Enterobacter cloacae isolated from sugar refinery sludge. Int J Hydrogen Energy 40(3):1402–1407. https://doi.org/10.1016/j.ijhydene.2014.11.121

    Article  CAS  Google Scholar 

  20. Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V (2016) Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. Int J Hydrogen Energy 41:10639–10645. https://doi.org/10.1016/j.ijhydene.2016.04.197

    Article  CAS  Google Scholar 

  21. Batista AP, Gouveia L, Marques P (2018) Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter Aerogenes—effect of operational conditions and fermentation kinetics. Renew Energy 119:203–209. https://doi.org/10.1016/j.renene.2017.12.017

    Article  CAS  Google Scholar 

  22. Abd-Alla MH, Gabra FA, Danial AW, Abdel-Wahab AM (2019) Enhancement of biohydrogen production from sustainable orange peel wastes using Enterobacter species isolated from domestic wastewater. Int J Energy Res 43:391–404. https://doi.org/10.1002/er.4273

    Article  CAS  Google Scholar 

  23. Skonieczny MT (2008) Biological hydrogen production from industrial wastewater with Clostridium beijerinckii. Thesis submitted to McGill University, Montreal. 5–6

  24. Pattil UK, Muskan K (2009) Essentials of biotechnology. I.K. International Publishing House Pvt. Ltd., New Delhi, p 244

    Google Scholar 

  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim M, Oh S, Rakwal R, Liu C, Zhang Z (2013) 2nd international conference on environment, energy and biotechnology, IPCBEE, IACSIT Press, Singapore 51:87–93

  27. Abdul PM, Jahim JM, Harun S, Markom M, Hassan O, Mohammad AW, Asis AJ (2013) Biohydrogen production from pentose-rich oil palm empty fruit bunch molasses: a first trial. Int J Hydrogen Energy 38:15693–15699. https://doi.org/10.1016/j.ijhydene.2013.05.050

    Article  CAS  Google Scholar 

  28. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  29. Xiao B, Liu J (2009) Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J Hazard Mater 168:163–167. https://doi.org/10.1016/j.jhazmat.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  30. Bellucci M, Botticella G, Francavilla M, Beneduce L (2016) Inoculum pre-treatment affects the fermentative activity of hydrogen-producing communities in the presence of 5-hydroxymethylfurfural. Appl Microbiol Biotechnol 100:493–504. https://doi.org/10.1007/s00253-015-7002-6

    Article  PubMed  CAS  Google Scholar 

  31. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827. https://doi.org/10.1002/bit.23122

    Article  PubMed  CAS  Google Scholar 

  33. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593. https://doi.org/10.1016/S0032-9592(99)00109-0

    Article  CAS  Google Scholar 

  35. Khanna N, Kotay SM, Gilbert JJ, Das D (2011) Improvement of biohydrogen production by Enterobacter cloacae IIT-BT 08 under regulated pH. J Biotechnol 152:9–15. https://doi.org/10.1016/j.jbiotec.2010.12.014

    Article  PubMed  CAS  Google Scholar 

  36. Mezzatesta ML, Gona F, Stefani S (2012) Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7:887–902. https://doi.org/10.2217/fmb.12.61

    Article  PubMed  CAS  Google Scholar 

  37. Izdebski R, Baraniak A, Herda M, Fiett J, Bonten MJ, Carmeli Y (2014) MLST reveals potentially high-risk international clones of Enterobacter cloacae. J Antimicrob Chemother 70:48–56. https://doi.org/10.1093/jac/dku359

    Article  PubMed  CAS  Google Scholar 

  38. Levin DB, Pitt L, Love M (2004) Biohydrogen production prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. https://doi.org/10.1016/S0360-3199(03)00094-6

    Article  CAS  Google Scholar 

  39. Yin Y, Wang J (2016) Optimization of hydrogen production by response surface methodology using γ-irradiated sludge as inoculum. Energy Fuels 30:4096–4103. https://doi.org/10.1021/acs.energyfuels.6b00262

    Article  CAS  Google Scholar 

  40. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilicacidogenesis. Int J Hydrogen Energy 29:1355–1363. https://doi.org/10.1016/j.ijhydene.2003.09.011

    Article  CAS  Google Scholar 

  41. Amorim ELC, Amorim NCS, Alves I, Martins JS (2014) Biohydrogen production from Cassava wastewater in an anaerobic fluidized bed reactor. Braz J Chem Eng 31:603–612. https://doi.org/10.1590/0104-6632.20140313s00002458

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DST—INSPIRE, Department of Science and Technology, New Delhi, India (Grant No. IF120738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Mariathankam Nizzy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizzy, A.M., Kannan, S. & Anand, S.B. Identification of Hydrogen Gas Producing Anaerobic Bacteria Isolated from Sago Industrial Effluent. Curr Microbiol 77, 2544–2553 (2020). https://doi.org/10.1007/s00284-020-02092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02092-2

Navigation