Advertisement

The Complete Genome of Emcibacter congregatus ZYLT, a Marine Bacterium Encoding a CRISPR-Cas 9 Immune System

  • Zhe Zhao
  • Rui-an Zhang
  • Ge-yi Fu
  • Ran Zhang
  • Yan-fang Nie
  • Cong SunEmail author
  • Min WuEmail author
Article

Abstract

Emcibacter congregatus ZYLT was isolated from a sediment sample cultured in situ in a coast located in the East China Sea. The genome of E. congregatus ZYLT was sequenced and assembled into one single circular chromosome with the size of 4,189,011 bp and G+C content of 52.6%. Genomic annotation showed that E. congregatus ZYLT had an intact Type II-C CRISPR-Cas system consists of three cas genes (cas 9, cas 1, and cas 2), 34 direct repeat sequences with the length of 36 bp, and 33 spacers. The predicted Cas 9 protein was smaller than most of existing genome editing tools. This structure might have potential in developing new gene editing system and uncovering the regulatory mechanisms of CRISPR-Cas system. Besides, the comparison between E. congregatus ZYLT and its relative species living in neritic environments unraveled some common traits of the defective strategies of these bacteria to face inshore challenges including the motility, multidrug resistance, and universal efflux pumps.

Notes

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ19C010005, China Postdoctoral Science Foundation (Grant No. 2018M642382), and the Science & Technology Basic Resources Investigation Program of China (Grant No. 2017FY100300).

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2019_1867_MOESM1_ESM.docx (403 kb)
Supplementary file1 (DOCX 402 kb)

References

  1. 1.
    Hille F, Richter H, Wong SP, Bratovic M, Ressel S, Charpentier E (2018) The biology of CRISPR-Cas: backward and forward. Cell 172(6):1239–1259.  https://doi.org/10.1016/j.cell.2017.11.032 CrossRefPubMedGoogle Scholar
  2. 2.
    Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244.  https://doi.org/10.1016/j.molcel.2014.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397.  https://doi.org/10.1016/j.molcel.2015.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736.  https://doi.org/10.1038/nrmicro3569 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Iino T, Ohkuma M, Kamagata Y, Amachi S (2016) Iodidimonas muriae gen. nov., sp nov., an aerobic iodide-oxidizing bacterium isolated from brine of a natural gas and iodine recovery facility, and proposals of Iodidimonadaceae fam. nov., Iodidimonadales ord. nov., Emcibacteraceae fam. nov and Emcibacterales ord. nov. Int J Syst Evol Microbiol 66(12):5016–5022.  https://doi.org/10.1099/ijsem.0.001462 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao Z, Shen X, Chen W, Yu X-Y, Fu G-Y, Sun C, Wu M (2018) Emcibacter congregatus sp. nov., isolated from sediment cultured in situ. Int J Syst Evol Microbiol 68(9):2846–2850.  https://doi.org/10.1099/ijsem.0.002906 CrossRefPubMedGoogle Scholar
  7. 7.
    Xu XW, Huo YY, Bai XD, Wang CS, Oren A, Li SY, Wu M (2011) Kordiimonas lacus sp. Nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. Int J Syst Evol Microbiol 61(2):422–426.  https://doi.org/10.1099/ijs.0.018200-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Wu YH, Jian SL, Meng FX, Maripatay TD, Wang CS, Xu XW (2016) Kordiimonas lipolytica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 66(6):2198–2204.  https://doi.org/10.1099/ijsem.0.001007 CrossRefPubMedGoogle Scholar
  9. 9.
    Kurahashi M, Fukunaga Y, Harayarna S, Yokota A (2008) Sneathiella glossodoripedis sp. nov., a marine alphaproteobacterium isolated from the nudibranch Glossodoris cincta, and proposal of Sneathiellales ord. nov. and Sneathiellaceae fam. nov. Int J Syst Evol Microbiol 58(3):548–552.  https://doi.org/10.1099/ijs.0.65328-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Liu XP, Li GY, Lai QL, Sun FQ, Du YP, Shao ZZ (2015) Emcibacter nanhaiensis gen. nov. sp. nov., isolated from sediment of the South China Sea. Anton Leeuw Int J Gen 107(4):893–900.  https://doi.org/10.1007/s10482-015-0381-y CrossRefGoogle Scholar
  11. 11.
    Stefanova P, Taseva M, Georgieva T, Gotcheva V, Angelov AS (2013) A modified CTAB method for DNA extraction from soybean and meat products. Biotechnol Biotechnol Equip 27(3):3803–3810.  https://doi.org/10.5504/BBEQ.2013.0026 CrossRefGoogle Scholar
  12. 12.
    Marmur J (1961) Procedure for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3(2):208.  https://doi.org/10.1016/S0022-2836(61)80047-8 CrossRefGoogle Scholar
  13. 13.
    Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KHJ, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai ZW, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng XQ, Rubin GM, Adams MD, Venter JC (2000) A whole-genome assembly of Drosophila. Science 287(5461):2196–2204.  https://doi.org/10.1126/science.287.5461.2196 CrossRefPubMedGoogle Scholar
  14. 14.
    Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123.  https://doi.org/10.1101/gr.089532.108 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055.  https://doi.org/10.1101/gr.186072.114 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom.  https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  17. 17.
    Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform.  https://doi.org/10.1186/1471-2105-4-41 CrossRefGoogle Scholar
  18. 18.
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34.  https://doi.org/10.1093/nar/27.1.29 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108.  https://doi.org/10.1093/nar/gkm160 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289(31):21312–21324.  https://doi.org/10.1074/jbc.M114.564625 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao LY, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun.  https://doi.org/10.1038/s41467-018-08224-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Patterson AG, Yevstigneyeva MS, Fineran PC (2017) Regulation of CRISPR-Cas adaptive immune systems. Curr Opin Microbiol 37:1–7.  https://doi.org/10.1016/j.mib.2017.02.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15(3):169–182.  https://doi.org/10.1038/nrmicro.2016.184 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform.  https://doi.org/10.1186/1471-2105-8-172 CrossRefGoogle Scholar
  25. 25.
    Westra ER, Dowling AJ, Broniewski JM, van Houte S (2016) Evolution and ecology of CRISPR. Annu Rev Ecol Evol Syst 47:307–331.  https://doi.org/10.1146/annurev-ecolsys-121415-032428 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Life SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.College of Life Sciences and MedicineZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  4. 4.Ocean CollegeZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations