Metagenomic Analysis of the Effect of Enteromorpha prolifera Bloom on Microbial Community and Function in Aquaculture Environment


Enteromorpha prolifera blooms considerably affected coastal environments in recent years. However, the effects of E. prolifera on microbial ecology and function remained unknown. In this study, metagenomic sequencing was used to investigate the effect of E. prolifera bloom on the microbial communities and functional genes in an aquaculture environment. Results showed that E. prolifera bloom could significantly alter the microbial composition and abundance, and heterotrophic bacteria comprised the major groups in the E. prolifera bloom pond, which was dominated by Actinomycetales and Flavobacteriales. The study indicated that viruses played an important role in shaping the microbial community and diversity during E. prolifera bloom. These viruses affected various dominant microbial taxa (such as Rhodobacteraceae, Synechococcus, and Prochlorococcus), which produced an obvious impact on potential nutrient transformation. Functional annotation analysis indicated that E. prolifera bloom would considerably shift the metabolism function by altering the structure and abundance of the microbial community. E. prolifera bloom pond had the low ability of potential metabolic capabilities of nitrogen, sulfur, and phosphate, whereas promoted gene abundance of genetic information processing. These changes in the microbial community and function could produce serious effect on aquaculture ecosystem.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Morand P, Merceron M (2005) Macroalgal population and sustainability. J Coastal Res.

  2. 2.

    Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42(5):1105–1118

  3. 3.

    Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010) Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60(9):1423–1432

  4. 4.

    Hu C, Li D, Chen C, Ge J, Muller-Karger FE, Liu J, Yu F, He MX (2010) On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res 115(C5):C05017

  5. 5.

    Huo Y, Zhang J, Chen L, Hu M, Yu K, Chen Q, He Q, He P (2013) Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period. Limnol Oceanogr 58(6):2206–2218

  6. 6.

    Qi L, Hu C, Xing Q, Shang S (2016) Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 58:35–44.

  7. 7.

    Teichberg M, Fox SE, Olsen YS, Valiela I, Martinetto P, Iribarne O, Muto EY, Petti MAV, Corbisier TN, Soto-Jiménez M, Páez-Osuna F, Castro P, Freitas H, Zitelli A, Cardinaletti M, Tagliapietra D (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Chang Biol 16(9):2624–2637.

  8. 8.

    Thornber CS, Guidone M, Deacutis C, Green L, Ramsay CN, Palmisciano M (2017) Spatial and temporal variability in macroalgal blooms in a eutrophied coastal estuary. Harmful Algae 68:82–96.

  9. 9.

    Lyons DA, Arvanitidis C, Blight AJ, Chatzinikolaou E, Guy-Haim T, Kotta J, Orav-Kotta H, Queirós AM, Rilov G, Somerfield PJ, Crowe TP (2014) Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob Chang Biol 20(9):2712–2724.

  10. 10.

    García-Robledo E, Corzo A (2011) Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm. Mar Pollut Bull 62(7):1550–1556.

  11. 11.

    Wetzel M, Weber A, Giere O (2002) Re-colonization of anoxic/sulfidic sediments by marine nematodes after experimental removal of macroalgal cover. Mar Biol 141(4):679–689

  12. 12.

    Nelson TA, Lee DJ, Smith BC (2003) Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phycol 39(5):874–879

  13. 13.

    Lin G, Sun F, Wang C, Zhang L, Zhang X (2017) Assessment of the effect of Enteromorpha prolifera on bacterial community structures in aquaculture environment. PLoS ONE 12(7):e0179792.

  14. 14.

    Sun F-L, Wang Y-S, Wu M-L, Wang Y-T, Li QP (2011) Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River estuary. Biologia 66(4):574–584.

  15. 15.

    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120.

  16. 16.

    Corzo A, Van Bergeijk S, Garcia-Robledo E (2009) Effects of green macroalgal blooms on intertidal sediments: net metabolism and carbon and nitrogen contents. Mar Ecol Prog Ser 380:81–93

  17. 17.

    Tyler AC, McGlathery KJ, Anderson IC (2001) Macroalgae mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Estuar Coast Shelf Sci 53(2):155–168.

  18. 18.

    Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5(4):590–600

  19. 19.

    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336(6081):608–611

  20. 20.

    Sun F, Wang Y, Wang C, Zhang L, Tu K, Zheng Z (2019) Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment. Aquaculture 507:196–202.

  21. 21.

    Voget S, Wemheuer B, Brinkhoff T, Vollmers J, Dietrich S, Giebel H-A, Beardsley C, Sardemann C, Bakenhus I, Billerbeck S, Daniel R, Simon M (2015) Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J 9(2):371–384.

  22. 22.

    Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11

  23. 23.

    Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol R 64(1):69–114

  24. 24.

    Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812

  25. 25.

    Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, Sullivan MB (2014) Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513(7517):242–245

  26. 26.

    Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706

  27. 27.

    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW (2011) Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA 108(39):E757–E764

  28. 28.

    Chow C-ET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA (2013) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. Isme J 8:816.

  29. 29.

    Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB (2015) Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. Isme J 10:437.

  30. 30.

    Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’study of seasonal and diel temporal variation. PLoS ONE 5(11):e15545

  31. 31.

    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. P Natl Acad Sci USA 109(52):21390–21395.

  32. 32.

    Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189(6):531–539.

  33. 33.

    Sun FL, Wang YS, Wu ML, Sun CC, Cheng H (2015) Spatial and vertical distribution of bacterial community in the northern South China Sea. Ecotoxicology 24(7–8):1478–1485.

  34. 34.

    Sun F-L, Wang Y-S, Wu M-L, Jiang Z-Y, Sun C-C, Cheng H (2014) Genetic Diversity of bacterial communities and gene transfer agents in northern South China Sea. PLoS ONE 9(11):e111892

  35. 35.

    Eiler A, Hayakawa DH, Church MJ, Karl DM, Rappé MS (2009) Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre. Environ Microbiol 11(9):2291–2300.

  36. 36.

    Hill PG, Zubkov MV, Purdie DA (2010) Differential responses of Prochlorococcus and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical Northeast Atlantic Ocean. FEMS Microbiol Lett 306(1):82–89

  37. 37.

    Lam P, Kuypers MM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345

  38. 38.

    Christensen PB, Rysgaard S, Sloth NP, Dalsgaard T, Schwærter S (2000) Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21(1):73–84

  39. 39.

    McGlathery KJ, Krause-Jensen D, Rysgaard S, Christensen PB (1997) Patterns of ammonium uptake within dense mats of the filamentous macroalga Chaetomorpha linum. Aquat Bot 59(1):99–115.

  40. 40.

    Dalsgaard T (2003) Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnol Oceanogr 48(6):2138–2150

  41. 41.

    Nizzoli D, Carraro E, Nigro V, Viaroli P (2010) Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res 44(9):2715–2724

Download references


This research was supported by the Project of Guangdong Science and Technology Department (2017A020216008 and 2016A020221024), and the Project of Fujian Science and Technology Department (2016I1002 and 2017T3010).

Author information

Correspondence to Chunzhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 469 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Wang, C., Chen, H. et al. Metagenomic Analysis of the Effect of Enteromorpha prolifera Bloom on Microbial Community and Function in Aquaculture Environment. Curr Microbiol (2020) doi:10.1007/s00284-019-01862-x

Download citation