Advertisement

Characterization and Genome Analysis of a Zearalenone-Degrading Bacillus velezensis Strain ANSB01E

  • Yongpeng Guo
  • Jianchuan Zhou
  • Yu Tang
  • Qiugang Ma
  • Jianyun Zhang
  • Cheng Ji
  • Lihong ZhaoEmail author
Article
  • 68 Downloads

Abstract

Zearalenone, a nonsteroidal estrogenic mycotoxin mainly produced by Fusarium species, causes reproductive disorders and hyperestrogenic syndromes in animals and humans. The bacterial strain Bacillus velezensis ANSB01E, isolated from chicken cecal content, was capable of effectively degrading zearalenone in both liquid medium and mouldy corn. Moreover, Bacillus velezensis ANSB01E exhibited good antimicrobial activities against animal pathogenic bacteria, including Escherichia coli, Staphylococcus aureus, and Salmonella spp. Genome-based analysis revealed the presence of genes coding peroxiredoxin and alpha/beta hydrolase in Bacillus velezensis ANSB01E, which may be involved in zearalenone degradation. The study on the genome provides insights into the zearalenone degradation mechanisms and advances the potential application of Bacillus velezensis ANSB01E in food and feed industry.

Notes

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (Project No.31772637).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

284_2019_1811_MOESM1_ESM.docx (144 kb)
Supplementary file1 (DOCX 144 kb)

References

  1. 1.
    Abbes S, Salah-Abbes JB, Ouanes Z, Houas Z, Othman O, Bacha H et al (2006) Preventive role of phyllosilicate clay on the immunological and biochemical toxicity of zearalenone in Balb/c mice. Int Immunopharmacol 6:1251–1258CrossRefGoogle Scholar
  2. 2.
    El-Makawy A, Hassanane MS, Abd Alla E-SAM (2001) Genotoxic evaluation for the estrogenic mycotoxin zearalenone. Reprod Nutr Dev 41:79–89CrossRefGoogle Scholar
  3. 3.
    Emidio ES, Calisto V, de Marchi MR, Esteves VI (2017) Photochemical transformation of zearalenone in aqueous solutions under simulated solar irradiation: kinetics and influence of water constituents. Chemosphere 169:146–154CrossRefGoogle Scholar
  4. 4.
    Huang LC, Zheng N, Zheng BQ, Wen F, Cheng JB, Han RW et al (2014) Simultaneous determination of aflatoxin M1, ochratoxin A, zearalenone and alpha-zearalenol in milk by UHPLC-MS/MS. Food Chem 146:242–249CrossRefGoogle Scholar
  5. 5.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Willams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, USAGoogle Scholar
  6. 6.
    Hsu TC, Yi PJ, Lee TY, Liu JR (2018) Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. PLoS ONE 13:e0194866CrossRefGoogle Scholar
  7. 7.
    Iqbal SZ, Nisar S, Asi MR, Jinap S (2014) Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 43:98–103CrossRefGoogle Scholar
  8. 8.
    Lei Y, Zhao L, Ma Q, Zhang J, Zhou T, Gao C et al (2014) Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01G. World Mycotoxin J 7(2):143–151CrossRefGoogle Scholar
  9. 9.
    Ma R, Zhang L, Liu M, Su YT, Xie WM, Zhang NY et al (2018) Individual and combined occurrence of mycotoxins in feed ingredients and complete feeds in China. Toxins 10(3):113CrossRefGoogle Scholar
  10. 10.
    Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C et al (2016) Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol 238:56–59CrossRefGoogle Scholar
  11. 11.
    Rempe I, Kersten S, Valenta H, Danicke S (2013) Hydrothermal treatment of naturally contaminated maize in the presence of sodium metabisulfite, methylamine and calcium hydroxide; effects on the concentration of zearalenone and deoxynivalenol. Mycotoxin Res 29:169–175CrossRefGoogle Scholar
  12. 12.
    Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 4:663–675CrossRefGoogle Scholar
  13. 13.
    Steyn PS (1995) Mycotoxins, general view, chemistry and structure. Toxicol Lett 82:843–851CrossRefGoogle Scholar
  14. 14.
    Takahashi-Ando N, Kimura M, Kakeya H, Osada H, Yamaguchi I (2002) A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochem J 365:1–6CrossRefGoogle Scholar
  15. 15.
    Tinyiro SE, Wokadala C, Xu D, Yao W (2011) Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiol 56:321–327CrossRefGoogle Scholar
  16. 16.
    Vekiru E, Fruhauf S, Hametner C, Schatzmayr G, Krska R, Moll WD et al (2016) Isolation and characterisation of enzymatic zearalenone hydrolysis reaction products. World Mycotoxin J 9:353–363CrossRefGoogle Scholar
  17. 17.
    Vekiru E, Hametner C, Mitterbauer R, Rechthaler J, Adam G, Schatzmayr G et al (2010) Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microb 76:2353–2359CrossRefGoogle Scholar
  18. 18.
    Wang G, Yu M, Dong F, Shi J, Xu J (2017) Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control 77:57–64CrossRefGoogle Scholar
  19. 19.
    Wang G, Xi Y, Lian C, Sun Z, Zheng S (2019) Simultaneous detoxification of polar aflatoxin B1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites. J Hazard Mater 364:227–237CrossRefGoogle Scholar
  20. 20.
    Wang N, Li P, Pan J, Wang M, Long M, Zang J et al (2018) Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by zearalenone in mice. Sci Rep 8:13646CrossRefGoogle Scholar
  21. 21.
    Xu J, Wang H, Zhu Z, Ji F, Yin X, Hong Q et al (2016) Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of zearalenone by Bacillus spp. Food Control 68:244–250CrossRefGoogle Scholar
  22. 22.
    Xu Y, Wang Y, Ji J, Wu H, Pi F, Zhang Y et al (2019) Chemical and toxicological alterations of zearalenone under ozone treatment. Food Addit Contam A 36:163–174CrossRefGoogle Scholar
  23. 23.
    Yu Y, Qiu L, Wu H, Tang Y, Yu Y, Li X et al (2011) Degradation of zearalenone by the extracellular extracts of Acinetobacter sp. SM04 liquid cultures. Biodegradation 22:613–622CrossRefGoogle Scholar
  24. 24.
    Yu Y, Wu H, Tang Y, Qiu L (2012) Cloning, expression of a peroxiredoxin gene from Acinetobacter sp. SM04 and characterization of its recombinant protein for zearalenone detoxification. Microbiol Res 167:121–126CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Zhang Q, Feng X, Li S, Xia J, Xu H (2012) A novel agar diffusion assay for qualitative and quantitative estimation of ε-polylysine in fermentation broths and foods. Food Res Int 48:49–56CrossRefGoogle Scholar
  26. 26.
    Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongpeng Guo
    • 1
  • Jianchuan Zhou
    • 1
  • Yu Tang
    • 1
  • Qiugang Ma
    • 1
  • Jianyun Zhang
    • 1
  • Cheng Ji
    • 1
  • Lihong Zhao
    • 1
    Email author
  1. 1.State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations