Advertisement

The Resurgence of Dirigent Story: Time for a Bacterial Chapter

  • Siarhei A. DabravolskiEmail author
Letter to the editor
  • 46 Downloads

Abstract

For several decades, dirigent (DIR) domain-containing proteins have been assumed to be green lineage-specific, responsible for the defence response and lignan/lignin biosynthesis. Despite their high potential in terms of biotechnology and chemistry, to date there have been very few well-studied plant DIRs. However, recent achievements in sequencing technologies have allowed for discovery of DIR genes in bacteria. This prospective study suggests expansion of the focus of research to consider the existence of bacterial DIRs. It also considers the outlook for understanding DIR functioning with respect to the fields of green lineage evolution, organic synthesis, and biotechnology.

Notes

Compliance with Ethical Standards

Conflict of interest

The author declares no conflict of interest.

Supplementary material

284_2019_1809_MOESM1_ESM.pdf (95 kb)
Supplementary material 1 (PDF 94 kb)SFigure 1. Alignment of bacterial DIRs and some plant (+)- and (-) pinoresinol-forming DIRs. MUSCLE [30] alignment was conducted in Ugene software [31] and coloured as % of identity. All active and conserved sites as reviewed in [32], structure elements of AtDIR6 [33] (5LAL accession in PDB) shown above the alignment.
284_2019_1809_MOESM2_ESM.pdf (68 kb)
Supplementary material 2 (PDF 67 kb)SFigure 2 Phylogenetic tree of bacterial and Arabidopsis thaliana DIR domain-containing proteins. Neighbour-Joining method [34] with JTT substitution model was used to reconstruct phylogenetic tree in MEGA X software [35]. Reliability for the internal branch was assessed using the bootstrapping method (1000 bootstrap replicates).
284_2019_1809_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 16 kb)STable 1. List of bacterial DIRs accessions (uniprot). Identified with InterPro (EMBL; https://www.ebi.ac.uk/interpro/) bacterial dirigent proteins (IPR004265). Sequences were used for alignment (SFig. 1) and phylogenetic tree reconstruction (SFig. 2).

References

  1. 1.
    Fristensky B, Riggleman RC, Wagoner W, Hadwiger LA (1985) Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan. Physiol Plant Pathol 27:15–28.  https://doi.org/10.1016/0048-4059(85)90053-0 CrossRefGoogle Scholar
  2. 2.
    Riggleman RC, Fristensky B, Hadwiger LA (1985) The disease resistance response in pea is associated with increased levels of specific mRNAs. Plant Mol Biol 4:81–86.  https://doi.org/10.1007/BF02418753 CrossRefPubMedGoogle Scholar
  3. 3.
    Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–367.  https://doi.org/10.1126/science.275.5298.362 CrossRefPubMedGoogle Scholar
  4. 4.
    Pickel B, Constantin M-A, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed 49:202–204.  https://doi.org/10.1002/anie.200904622 CrossRefGoogle Scholar
  5. 5.
    Ralph S, Park J-Y, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40.  https://doi.org/10.1007/s11103-005-2226-y CrossRefPubMedGoogle Scholar
  6. 6.
    Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991.  https://doi.org/10.1016/j.phytochem.2007.04.042 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu J, Stipanovic RD, Bell AA, Puckhaber LS, Magill CW (2008) Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry 69:3038–3042.  https://doi.org/10.1016/j.phytochem.2008.06.007 CrossRefPubMedGoogle Scholar
  8. 8.
    Uchida K, Akashi T, Aoki T (2017) The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol 58:398–408.  https://doi.org/10.1093/pcp/pcw213 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U (2016) Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular Poaceae-specific proteins. Molecular Plant. 9:514–527.  https://doi.org/10.1016/j.molp.2015.12.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110:14498–14503.  https://doi.org/10.1073/pnas.1308412110 CrossRefPubMedGoogle Scholar
  11. 11.
    Li Q, Chen J, Xiao Y, Di P, Zhang L, Chen W (2014) The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance. BMC Genomics 15:388.  https://doi.org/10.1186/1471-2164-15-388 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Corbin C, Drouet S, Markulin L, Auguin D, Lainé É, Davin LB, Cort JR, Lewis NG, Hano C (2018) A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Mol Biol. 97:73–101.  https://doi.org/10.1007/s11103-018-0725-x CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng X, Su X, Muhammad A, Li M, Zhang J, Sun Y, Li G, Jin Q, Cai Y, Lin Y (2018) Molecular characterization, evolution, and expression profiling of the dirigent (DIR) family genes in Chinese White Pear (Pyrus bretschneideri). Front. Genet. 9:136.  https://doi.org/10.3389/fgene.2018.00136 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nobile PM, Bottcher A, Mayer JLS, Brito MS, dos Anjos IA, Landell MGA, Vicentini R, Creste S, Riaño-Pachón DM, Mazzafera P (2017) Identification, classification and transcriptional profiles of dirigent domain-containing proteins in sugarcane. Mol Genet Genomics. 292:1323–1340.  https://doi.org/10.1007/s00438-017-1349-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, Wang L, Chen X, Zhang C, Lu W, Xu P, Zhang S (2017) A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Front Plant Sci 8:1185.  https://doi.org/10.3389/fpls.2017.01185 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim K-W, Smith CA, Daily MD, Cort JR, Davin LB, Lewis NG (2015) Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites. J Biol Chem 290:1308–1318.  https://doi.org/10.1074/jbc.m114.611780 CrossRefPubMedGoogle Scholar
  17. 17.
    Mahato NK, Gupta V, Singh P, Kumari R, Verma H, Tripathi C, Rani P, Sharma A, Singhvi N, Sood U, Hira P, Kohli P, Nayyar N, Puri A, Bajaj A, Kumar R, Negi V, Talwar C, Khurana H, Nagar S, Sharma M, Mishra H, Singh AK, Dhingra G, Negi RK, Shakarad M, Singh Y, Lal R (2017) Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie Van Leeuwenhoek 110:1357–1371.  https://doi.org/10.1007/s10482-017-0928-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(2019):D351–D360.  https://doi.org/10.1093/nar/gky1100 CrossRefPubMedGoogle Scholar
  19. 19.
    T. UniProt Consortium (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699–2699.  https://doi.org/10.1093/nar/gky092 CrossRefGoogle Scholar
  20. 20.
    Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, Schaller A (2012) A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins: characterization of dirigent protein AtDIR6. FEBS J 279:1980–1993.  https://doi.org/10.1111/j.1742-4658.2012.08580.x CrossRefPubMedGoogle Scholar
  21. 21.
    Kazewadel C, Klebensberger J, Richter S, Pfannstiel J, Gerken U, Pickel B, Schaller A, Hauer B (2013) Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Appl Microbiol Biotechnol 97:7215–7227.  https://doi.org/10.1007/s00253-012-4579-x CrossRefGoogle Scholar
  22. 22.
    Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The charophycean green algae provide insights into the early origins of plant cell walls: cell-wall evolution and the Charophycean green algae. Plant J 68:201–211.  https://doi.org/10.1111/j.1365-313X.2011.04686.x CrossRefPubMedGoogle Scholar
  23. 23.
    de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM (2017) How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte algae? Plant Cell Physiol 58:934–945.  https://doi.org/10.1093/pcp/pcx037 CrossRefPubMedGoogle Scholar
  24. 24.
    Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175.  https://doi.org/10.1016/j.cub.2008.12.031 CrossRefPubMedGoogle Scholar
  25. 25.
    Roodt D, Li Z, Van de Peer Y, Mizrachi E (2019) Loss of wood formation genes in monocot genomes. Genome Biol Evol 11:1986–1996.  https://doi.org/10.1093/gbe/evz115 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962.  https://doi.org/10.1093/femsre/fux049 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X (2018) Lignin depolymerization and utilization by bacteria. Biores Technol 269:557–566.  https://doi.org/10.1016/j.biortech.2018.08.118 CrossRefGoogle Scholar
  28. 28.
    Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8:e73957.  https://doi.org/10.1371/journal.pone.0073957 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lata S, Mishra NK, Raghava GP (2010) AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinform 11:S19.  https://doi.org/10.1186/1471-2105-11-S1-S19 CrossRefGoogle Scholar
  30. 30.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167.  https://doi.org/10.1093/bioinformatics/bts091 CrossRefPubMedGoogle Scholar
  32. 32.
    Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J (2017) Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot 68:3287–3301.  https://doi.org/10.1093/jxb/erx141 CrossRefPubMedGoogle Scholar
  33. 33.
    Gasper R, Effenberger I, Kolesinski P, Terlecka B, Hofmann E, Schaller A (2016) Dirigent protein mode of action revealed by the crystal structure of AtDIR6. Plant Physiol 172:2165–2175.  https://doi.org/10.1104/pp.16.01281 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  35. 35.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547–1549.  https://doi.org/10.1093/molbev/msy096 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations