Lysobacter segetis sp. nov., Isolated from Soil

  • Leonid N. Ten
  • Jongguen Jeon
  • Nabil Salah Elderiny
  • Myung Kyum Kim
  • Seung-Yeol Lee
  • Hee-Young JungEmail author


A Gram-negative, aerobic, motile by gliding, rod-shaped bacterium, strain 17J68-2T, was isolated from a soil sample taken from Jeju Island, Republic of Korea. The isolate displayed high 16S rRNA gene sequence similarity to the members of the genus Lysobacter in the family Lysobacteraceae, with Lysobacter humi FJY8T (98.4% similarity), Lysobacter xinjiangensis RCML-52T (98.3%), and Lysobacter mobilis 9NM-14T (98.1%) as closest phylogenetic neighbors. Growth of strain 17J68-2T occurred at 15–42 °C, pH 7–8, and in the presence of 0–1.0% NaCl. Draft genome was 2.94 Mb in size with G+C content of 70.5 mol%. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine. Ubiquinone Q-8 was the predominant respiratory quinone and the major fatty acids were C16:0 iso (39.4%), summed feature 3 (C16:1ω7c/C16:1ω6c) (6.6%), C11:0 iso 3–OH (6.4%), C15:0 iso (6.4%), and C16:1 iso H (6.2%). The DNA–DNA relatedness between strain 17J68-2T and L. humi, L. xinjiangensis, and L. mobilis were 39.9, 39.4, and 25.3%, respectively. From these results, it is concluded that the novel isolate possesses sufficient characteristics to differentiate it from the most closely affiliated Lysobacter species, and strain 17J68-2T represents a novel species of the genus Lysobacter, for which the name Lysobacter segetis sp. nov. (=KCTC 62237T = JCM 33058T) is proposed.



This work was supported by the Brain Pool Program (Grant No. 2019H1D3A2A01061406) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Supplementary material

284_2019_1801_MOESM1_ESM.pdf (448 kb)
Supplementary file1 (PDF 447 kb)


  1. 1.
    Agarwal S, Hunnicutt DW, McBride MJ (1997) Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci USA 94:12139–12144PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cappuccino JG, Sherman N (2010) Microbiology: a laboratory manual, 9th edn. Benjamin Cummings, San FranciscoGoogle Scholar
  4. 4.
    Chen W, Zhao YL, Cheng J, Zhou XK, Salam N, Fang BZ, Li QQ, Hozzein WN, Li WJ (2016) Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie Van Leeuwenhoek 109:1047–1053PubMedCrossRefGoogle Scholar
  5. 5.
    Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Evol Microbiol 28:367–393Google Scholar
  6. 6.
    Christensen P (2005) Genus IV. Lysobacter Christensen and Cook 1978 372AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 95–101Google Scholar
  7. 7.
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Hana Y, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466PubMedCrossRefGoogle Scholar
  8. 8.
    Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric DNA–DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  9. 9.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  10. 10.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  11. 11.
    Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H, Imanaka T (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318PubMedCrossRefGoogle Scholar
  12. 12.
    Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46(D1):D851–D860PubMedCrossRefGoogle Scholar
  13. 13.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  14. 14.
    Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  15. 15.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  16. 16.
    Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205CrossRefGoogle Scholar
  17. 17.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  18. 18.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  19. 19.
    Lee M, Woo SG, Chae M, Shin MC, Jung HM, Ten LN (2011) Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol 61:598–604PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103PubMedCrossRefGoogle Scholar
  21. 21.
    Lee JJ, Lee YH, Park SJ, Lee SY, Kim BO, Ten LN, Kim MK, Jung HY (2017) Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 67:1359–1365PubMedCrossRefGoogle Scholar
  22. 22.
    Lee D, Jang JH, Cha S, Seo T (2017) Lysobacter humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 67:951–955PubMedCrossRefGoogle Scholar
  23. 23.
    Li J, Han Y, Guo W, Wang Q, Liao S, Wang G (2018) Lysobacter tongrenensis sp. nov., isolated from soil of a manganese factory. Arch Microbiol 200:439–444PubMedCrossRefGoogle Scholar
  24. 24.
    Liu M, Liu Y, Wang Y, Luo X, Dai J, Fang C (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437PubMedCrossRefGoogle Scholar
  25. 25.
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  26. 26.
    Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G+ C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356PubMedCrossRefGoogle Scholar
  27. 27.
    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  28. 28.
    Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131PubMedCrossRefGoogle Scholar
  29. 29.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. 30.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  31. 31.
    Siddiqi MZ, Im WT (2016) Lysobacter pocheonensis sp. nov., isolated from soil of a ginseng field. Arch Microbiol 198:551–557PubMedCrossRefGoogle Scholar
  32. 32.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  33. 33.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  34. 34.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  35. 35.
    Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44:6614–6624PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ten LN, Jung HM, Yoo SA, Im WT, Lee ST (2008) Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 46:519–524PubMedCrossRefGoogle Scholar
  37. 37.
    Ten LN, Jung HM, Im WT, Yoo SA, Oh HM, Lee ST (2009) Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 59:958–963PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tindall BJ (2014) The family name Solimonadaceae Losey et al. 2013 is illegitimate, proposals to create the names ‘Sinobacter soli’comb. nov. and ‘Sinobacter variicoloris’ contravene the Code, the family name Xanthomonadaceae Saddler and Bradbury 2005 and the order name Xanthomonadales Saddler and Bradbury 2005 are illegitimate and notes on the application of the family names Solibacteraceae Zhou et al. 2008, Nevskiaceae Henrici and Johnson 1935 (Approved Lists 1980) and Lysobacteraceae Christensen and Cook 1978 (Approved Lists 1980) and order name Lysobacteriales Christensen and Cook 1978 (Approved Lists 1980) with respect to the classification of the corresponding type genera Solibacter Zhou et al. 2008, Nevskia Famintzin 1892 (Approved Lists 1980) and Lysobacter Christensen and Cook 1978 (Approved Lists 1980) and importance of accurately expressing the link between a taxonomic name, its authors and the corresponding description/circumscription/emendation. Int J Syst Evol Microbiol 64 293–297Google Scholar
  39. 39.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  40. 40.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wen C, Xi L, She R, Zhao S, Hao Z, Luo L, Liao H, Chen Z, Han G, Cao S, Wu R, Yan Q, Hou R (2016) Lysobacter chengduensis sp. nov. isolated from the air of captive Ailuropoda melanoleuca enclosures in Chengdu China. Curr Microbiol 72:88–93PubMedCrossRefGoogle Scholar
  42. 42.
    Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM et al (eds) Current protocols in molecular biology, no. supplement 27. Wiley, New York, pp. 2.4.1–2.4.5CrossRefGoogle Scholar
  43. 43.
    Yang SZ, Feng GD, Zhu HH, Wang YH (2015) Lysobacter mobilis sp. nov., isolated from abandoned lead-zinc ore. Int. J. Syst. Evol. Microbiol. 65:833–837PubMedCrossRefGoogle Scholar
  44. 44.
    Yoon J (2016) Polyphasic characterization of Lysobacter maris sp. nov., a bacterium isolated from seawater. Curr Microbiol 72:282–287PubMedCrossRefGoogle Scholar
  45. 45.
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhang XF, Wang HH, Sun XY, Pan CM (2017) Lysobacter zhanggongensis sp. nov. isolated from a pit mud. Curr Microbiol 74:1389–1393PubMedCrossRefGoogle Scholar
  47. 47.
    Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29:2669–2677PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leonid N. Ten
    • 1
  • Jongguen Jeon
    • 1
  • Nabil Salah Elderiny
    • 1
  • Myung Kyum Kim
    • 2
  • Seung-Yeol Lee
    • 1
    • 3
  • Hee-Young Jung
    • 1
    • 3
    Email author
  1. 1.School of Applied BiosciencesKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Bio and Environmental TechnologySeoul Women’s UniversitySeoulRepublic of Korea
  3. 3.Institute of Plant MedicineKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations