Advertisement

The Genome of the Plant-Associated Lactic Acid Bacterium Lactococcus lactis KF147 Harbors a Hybrid NRPS-PKS System Conserved in Strains of the Dental Cariogenic Streptococcus mutans

  • Barzan I. Khayatt
  • Vera van Noort
  • Roland J. SiezenEmail author
Article

Abstract

Lactococcus lactis subsp. lactis KF147 as a non-dairy strain from lactic acid bacteria (LAB) can inhabit plant tissues. It can grow on complex carbohydrates derived from plant cell walls. Its genome size is one of the largest among the sequenced lactococcal strains, possessing many genes that do not have homologues in the published genome sequences of dairy-associated L. lactis strains. In silico analysis has identified a gene cluster encoding a hybrid NRPS-PKS system (composed of non-ribosomal peptide synthetases and polyketide synthases) in the L. lactis KF147 genome, as first example of a LAB possessing such hybrid mega-enzymes. Hybrid systems produce hybrid NRP-PK secondary metabolites (natural products) in a wide variety of bacteria, fungi, and plants. In the hybrid NRPS-PKS system of L. lactis KF147, a total of 21 NRPS and 8 PKS domains were identified that are arranged into 6 NRPS modules, 3 PKS modules, and two single functional domains (trans-acyl-transferase “transAT” and thioesterase). We found homologous hybrid systems having similar gene, module, and domain organization in six other L. lactis strains and 25 strains of the dental cariogenic Streptococcus mutans. This study mainly aimed to predict the structure and function of the hybrid NRP-PK product of L. lactis KF147 using comparative genomics techniques, and included a detailed analysis of the regulatory system. Various bioinformatical approaches were used to predict the substrate specificity of the six A domains and the iterative transAT domain. Functional conservation of the A domains within different-niche-associated strains supported the prediction of the primary core structure of the putative hybrid natural product to be Leu-DLeu-Asp-DAsn-Gly-MC-MC-MC-DAsp (MC = Malonyl-CoA). Oxidative stress resistance and biofilm formation are the most probable functions of this hybrid system. The need for such a system in two different niches is argued, as an adaptation of L. lactis and S. mutans to adhere to plant tissues and human teeth, respectively, in an oxidative environment.

Notes

Acknowledgements

We would like to thank Professor Rene De Mot and Professor Rob Lavigne for their valuable suggestions and comments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors

Supplementary material

284_2019_1799_MOESM1_ESM.pdf (93 kb)
Genes involved in the hybrid NRPS-PKS gene cluster of L. lactis KF147 (PDF 93 kb)
284_2019_1799_MOESM2_ESM.pdf (33 kb)
L. lactis and S. mutans strains coding for the hybrid NRPS-PKS systems homologous to the hybrid NRPS-PKS system of L. lactis KF147 (PDF 34 kb)
284_2019_1799_MOESM3_ESM.pdf (113 kb)
Genome-based phylogeny of L. lactis strains (PDF 113 kb)
284_2019_1799_MOESM4_ESM.png (490 kb)
Clustering according to specificity-conferring codes of A domains (PNG 491 kb)
284_2019_1799_MOESM5_ESM.pdf (142 kb)
antiSMASH 4.0 prediction of the primary structures of the putative hybrid NRPS-PKS products (PDF 142 kb)
284_2019_1799_MOESM6_ESM.pdf (373 kb)
Four parts of a bootstrap phylogenetic tree, showing clustering of the NRPS A domains (from A1 to A6) of L. lactis KF147 (PDF 373 kb)
284_2019_1799_MOESM7_ESM.bmp (38.4 mb)
Bootstrap phylogeny showing the clustering of the AT domain (BMP 39352 kb)
284_2019_1799_MOESM8_ESM.pdf (235 kb)
Phylogeny of PKSs and NRPSs of L. lactis KF147 (PDF 235 kb)
284_2019_1799_MOESM9_ESM.pdf (491 kb)
Bootstrap NJ tree of 270 two-component system histidine kinases (PDF 491 kb)
284_2019_1799_MOESM10_ESM.png (605 kb)
Bootstrap NJ tree of two-component system response regulators (PNG 606 kb)
284_2019_1799_MOESM11_ESM.bmp (22.9 mb)
PhyML tree of TC system response regulator DNA-binding domains (BMP 23492 kb)
284_2019_1799_MOESM12_ESM.pdf (514 kb)
Multiple sequence alignment of the output (DNA-binding) domain of the response regulators of the L. lactis and S. mutans strains. And multiple sequence alignment of the upstream regions of the highly conserved genes downstream of the TC systems of L. lactis and S. mutans strains (PDF 515 kb)
284_2019_1799_MOESM13_ESM.bmp (109.6 mb)
Bootstrap phylogenetic tree showing clustering of the NRPS A domains (BMP 112198 kb)

References

  1. 1.
    Siezen RJ, Bayjanov J, Renckens B, Wels M, van Hijum SA, Molenaar D, van Hylckama Vlieg JE (2010) Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant-associated lactic acid bacterium. J Bacteriol 192(10):2649–2650.  https://doi.org/10.1128/JB.00276-10 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Siezen RJ, Starrenburg MJ, Boekhorst J, Renckens B, Molenaar D, van Hylckama Vlieg JE (2008) Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche. Appl Environ Microbiol 74(2):424–436.  https://doi.org/10.1128/AEM.01850-07 CrossRefPubMedGoogle Scholar
  3. 3.
    Kelleher P, Bottacini F, Mahony J, Kilcawley KN, van Sinderen D (2017) Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics 18(1):267.  https://doi.org/10.1186/s12864-017-3650-5 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vaughan EE, Pridmore RD, Mollet B (1998) Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054. J Bacteriol 180(18):4893–4902PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189(8):3256–3270.  https://doi.org/10.1128/JB.01768-06 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24(5):1073–1109.  https://doi.org/10.1039/b514050c CrossRefPubMedGoogle Scholar
  7. 7.
    Miyanaga A, Kudo F, Eguchi T (2018) Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep 35(11):1185–1209.  https://doi.org/10.1039/c8np00022k CrossRefPubMedGoogle Scholar
  8. 8.
    Gallo A, Ferrara M, Perrone G (2013) Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins 5(4):717–742.  https://doi.org/10.3390/toxins5040717 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Singh M, Chaudhary S, Sareen D (2017) Non-ribosomal peptide synthetases: identifying the cryptic gene clusters and decoding the natural product. J Biosci 42(1):175–187CrossRefGoogle Scholar
  10. 10.
    Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci USA 111(25):9259–9264.  https://doi.org/10.1073/pnas.1401734111 CrossRefPubMedGoogle Scholar
  11. 11.
    Martínez-Núñez MA, López VEL (2016) Nonribosomal peptides synthetases and their applications in industry. Sustain Chem Process 4:13CrossRefGoogle Scholar
  12. 12.
    Siezen RJ, Khayatt BI (2008) Natural products genomics. Microb. Biotechnol 1(4):275–282.  https://doi.org/10.1111/j.1751-7915.2008.00044.x CrossRefGoogle Scholar
  13. 13.
    Sussmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem 56(14):3770–3821.  https://doi.org/10.1002/anie.201609079 CrossRefGoogle Scholar
  14. 14.
    Winn M, Fyans JK, Zhuo Y, Micklefield J (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 33(2):317–347.  https://doi.org/10.1039/c5np00099h CrossRefPubMedGoogle Scholar
  15. 15.
    Du L, Sanchez C, Shen B (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3(1):78–95.  https://doi.org/10.1006/mben.2000.0171 CrossRefPubMedGoogle Scholar
  16. 16.
    Alvarez-Sieiro P, Montalban-Lopez M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100(7):2939–2951.  https://doi.org/10.1007/s00253-016-7343-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gao Y, Lu Y, Teng KL, Chen ML, Zheng HJ, Zhu YQ, Zhong J (2011) Complete genome sequence of Lactococcus lactis subsp. lactis CV56, a probiotic strain isolated from the vagina of healthy women. J Bacteriol.  https://doi.org/10.1128/JB.00358-11 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules.  https://doi.org/10.3390/molecules22081255 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13(Suppl 1):S3.  https://doi.org/10.1186/1475-2859-13-S1-S3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Silva CCG, Silva SPM, Ribeiro SC (2018) Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology 9:594.  https://doi.org/10.3389/fmicb.2018.00594 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Todorov SD, Botes M, Danova ST, Dicks LM (2007) Probiotic properties of Lactococcus lactis ssp. lactis HV219, isolated from human vaginal secretions. J Appl Microbiol 103(3):629–639.  https://doi.org/10.1111/j.1365-2672.2007.03290.x CrossRefPubMedGoogle Scholar
  22. 22.
    Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W (2016) Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci 120:118–132.  https://doi.org/10.1016/j.meatsci.2016.04.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Khayatt BI, Siezen RJ (2008) Non-ribosomal peptide synthetases (NRPSs) and Polyketide synthases (PKSs) encoded in lactic acid bacteria. In: 9th Symposium on lactic acid bacteria, Egmond aan Zee, The Netherlands, 2008. Federation of Europesn Microbiological Societies and the Netherlands Society for MicrobiologyGoogle Scholar
  24. 24.
    Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, Wels M, van Hijum SA, van Hylckama Vlieg JE (2011) Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 4(3):383–402.  https://doi.org/10.1111/j.1751-7915.2011.00247.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu C, Cichewicz R, Li Y, Liu J, Roe B, Ferretti J, Merritt J, Qi F (2010) Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol 76(17):5815–5826.  https://doi.org/10.1128/AEM.03079-09 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Golomb BL, Yu AO, Coates LC, Marco ML (2018) The Lactococcus lactis KF147 nonribosomal peptide synthetase/polyketide synthase system confers resistance to oxidative stress during growth on plant leaf tissue lysate. MicrobiologyOpen.  https://doi.org/10.1002/mbo3.531 CrossRefPubMedGoogle Scholar
  27. 27.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  28. 28.
    Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de Los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41.  https://doi.org/10.1093/nar/gkx319 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Khater S, Gupta M, Agrawal P, Sain N, Prava J, Gupta P, Grover M, Kumar N, Mohanty D (2017) SBSPKSv2: structure-based sequence analysis of polyketide synthases and non-ribosomal peptide synthetases. Nucleic Acids Res 45:W72–W79.  https://doi.org/10.1093/nar/gkx344 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tae H, Kong EB, Park K (2007) ASMPKS: an analysis system for modular polyketide synthases. BMC Bioinform 8:327.  https://doi.org/10.1186/1471-2105-8-327 CrossRefGoogle Scholar
  31. 31.
    Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367.  https://doi.org/10.1093/nar/gkr323 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Khayatt BI, Overmars L, Siezen RJ, Francke C (2013) Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS ONE 8(4):e62136.  https://doi.org/10.1371/journal.pone.0062136 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  34. 34.
    Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16(14):4174–4183CrossRefGoogle Scholar
  35. 35.
    Serre L, Verbree EC, Dauter Z, Stuitje AR, Derewenda ZS (1995) The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-A resolution. Crystal structure of a fatty acid synthase component. J Biol Chem 270(22):12961–12964CrossRefGoogle Scholar
  36. 36.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh34032/5/1792 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61(6):1061–1067.  https://doi.org/10.1093/sysbio/sys062 CrossRefPubMedGoogle Scholar
  39. 39.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42.  https://doi.org/10.1093/nar/gks1195 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    UniProt C (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75.  https://doi.org/10.1093/nar/gkr981 CrossRefGoogle Scholar
  41. 41.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefGoogle Scholar
  42. 42.
    Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260.  https://doi.org/10.1093/nar/gku949 CrossRefPubMedGoogle Scholar
  43. 43.
    Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505.  https://doi.org/10.1016/S1074-5521(99)80082-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Cheng YQ, Tang GL, Shen B (2002) Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140. J Bacteriol 184(24):7013–7024CrossRefGoogle Scholar
  45. 45.
    Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188(11):4024–4036.  https://doi.org/10.1128/JB.00052-06 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Perlova O, Gerth K, Kaiser O, Hans A, Muller R (2006) Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J Biotechnol 121(2):174–191.  https://doi.org/10.1016/j.jbiotec.2005.10.011 CrossRefPubMedGoogle Scholar
  47. 47.
    Tatsuno S, Arakawa K, Kinashi H (2007) Analysis of modular-iterative mixed biosynthesis of lankacidin by heterologous expression and gene fusion. J Antibiot 60(11):700–708.  https://doi.org/10.1038/ja.2007.90 CrossRefPubMedGoogle Scholar
  48. 48.
    Tu Q, Herrmann J, Hu S, Raju R, Bian X, Zhang Y, Muller R (2016) Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Sci Rep 6:21066.  https://doi.org/10.1038/srep21066 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Molecular and Biomolecular InformaticsRadboud UMCNijmegenThe Netherlands
  2. 2.Center of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
  3. 3.Department of Natural Resources, College of Agricultural Engineering SciencesUniversity of SulaimaniSulaimaniIraq
  4. 4.Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
  5. 5.Microbial BioinformaticsEdeThe Netherlands

Personalised recommendations