Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction

  • Wenjing Bao
  • Renquan Wei
  • Xuxia Liu
  • Shufan Dong
  • Tianyu Chen
  • Shuilin Fu
  • Heng GongEmail author


Anaerobic growth defect of pyruvate formate lyase (PFL)-deficient Klebsiella pneumoniae limits its industrial application, and the reason for this growth defect was analyzed in this study. The obtained evidences, combined with normal intracellular redox status and no further inhibition by adhE deletion, strongly suggested that growth defect in PFL-deficient K. pneumoniae was probably caused by lack of carbon flux from pyruvate to acetyl-CoA (AcCoA). Correspondingly, the anaerobic growth of PFL-deficient K. pneumoniae was promoted by deletion of pdhR, a negative transcriptional regulator gene for AcCoA generation. Through the regulation of pdhR deletion, the PFL-deficient K. pneumoniae exhibited highly efficient 1,3-propanediol production. Besides, in a 2-L fed-batch fermentation process, the cell growth of PFL-deficient K. pneumoniae strain almost recovered, when compared with that of the normal strain, and the 1,3-propanediol yield increased by 14%, while the byproducts acetate and 2,3-butanediol contents decreased by 29% and 24%, respectively.



This work was supported by the National Natural Science Foundation of China under Grant No. 31271862.

Supplementary material

284_2019_1795_MOESM1_ESM.docx (15 kb)
Supplementary file1 (DOCX 15 kb)


  1. 1.
    Lee JH, Jung MY, Oh MK (2018) High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol Biofuels 11:104. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Durgapal M, Kumar V, Yang TH, Lee HJ, Seung D, Park S (2014) Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresour Technol 159:223–231. CrossRefPubMedGoogle Scholar
  3. 3.
    Gao LR, Jiang X, Fu SL, Gong H (2014) In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumoniae. J Biotechnol 189:9–14. CrossRefPubMedGoogle Scholar
  4. 4.
    Jeng WY, Panjaitan NSD, Horng YT, Chung WT, Chien CC, Soo PC (2017) The negative effects of KPN00353 on glycerol kinase and microaerobic 1,3-propanediol production in Klebsiella pneumoniae. Front Microbiol 8:2441. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kumar V, Sankaranarayanan M, Jae KE, Durgapal M, Ashok S, Ko Y, Sarkar R, Park S (2012) Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl Microbiol Biotechnol 96(2):373–383. CrossRefPubMedGoogle Scholar
  6. 6.
    Zhuge B, Zhang C, Fang H, Zhuge J, Permaul K (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl Microbiol Biotechnol 87(6):2177–2184. CrossRefPubMedGoogle Scholar
  7. 7.
    Kumar V, Durgapal M, Sankaranarayanan M, Somasundar A, Rathnasingh C, Song H, Seung D, Park S (2016) Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresour Technol 214:432–440. CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Y, Jia Z, Lin J, Xu D, Fu S, Gong H (2017) Deleting pck improves growth and suppresses by-product formation during 1,3-propanediol fermentation by Klebsiella pneumoniae. J Appl Microbiol 123(3):678–687. CrossRefPubMedGoogle Scholar
  9. 9.
    Ko Y, Seol E, Sundara Sekar B, Kwon S, Lee J, Park S (2017) Metabolic engineering of Klebsiella pneumoniae J2B for co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: reduction of acetate and other by-products. Bioresour Technol 244(Pt 1):1096–1103. CrossRefPubMedGoogle Scholar
  10. 10.
    Kumar V, Park S (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36(1):150–167. CrossRefPubMedGoogle Scholar
  11. 11.
    Huang Y, Li Z, Shimizu K, Ye Q (2012) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour Technol 103(1):351–359. CrossRefPubMedGoogle Scholar
  12. 12.
    Lu X, Ren S, Lu J, Zong H, Song J, Zhuge B (2018) Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. J Appl Microbiol. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang M, Zhou Y, Tan T (2017) Cofactor engineering for enhanced production of diols by Klebsiella pneumoniae from co-substrate. Biotechnol J 12(11):1700176. CrossRefGoogle Scholar
  14. 14.
    Wang M, Wang G, Zhang T, Fan L, Tan T (2017) Multi-modular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate. Appl Microbiol Biotechnol 101(2):647–657. CrossRefPubMedGoogle Scholar
  15. 15.
    Lu X, Fu X, Zong H, Zhuge B (2016) Overexpressions of xylA and xylB in Klebsiella pneumoniae lead to enhanced 1,3-propanediol production by cofermentation of glycerol and xylose. J Microbiol Biotechnol 26(7):1252–1258. CrossRefPubMedGoogle Scholar
  16. 16.
    Xu D, Jia Z, Chu Q, Fu S, Gong H (2018) Analysis of growth and metabolites of pyruvate dehydrogenase complex deficient Klebsiella pneumoniae mutant in glycerol-based medium. J Microbiol Biotechnol. CrossRefPubMedGoogle Scholar
  17. 17.
    Murarka A, Clomburg JM, Moran S, Shanks JV, Gonzalez R (2010) Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. J Biol Chem 285(41):31548–31558. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang QZ, Ou MS, Kim Y, Ingram LO, Shanmugam KT (2010) Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase. Appl Environ Microbiol 76(7):2107–2114. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Menzel K, Zeng AP, Deckwer WD (1997) Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J Biotechnol 56(2):135–142CrossRefGoogle Scholar
  20. 20.
    Jung MY, Mazumdar S, Shin SH, Yang KS, Lee J, Oh MK (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl Environ Microbiol 80(19):6195–6203. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu C, Jiang X, Zhang Y, Lin J, Fu S, Gong H (2015) Improvement of 1,3-propanediol production in Klebsiella pneumoniae by moderate expression of puuC (encoding an aldehyde dehydrogenase). Biotechnol Lett 37(9):1783–1790. CrossRefPubMedGoogle Scholar
  22. 22.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645. CrossRefPubMedGoogle Scholar
  23. 23.
    Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL, Gong H (2014) Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production. J Appl Microbiol 117(3):690–698. CrossRefPubMedGoogle Scholar
  24. 24.
    Du C, Zhang Y, Li Y, Cao Z (2007) Novel redox potential-based screening strategy for rapid isolation of Klebsiella pneumoniae mutants with enhanced 1,3-propanediol-producing capability. Appl Environ Microbiol 73(14):4515–4521. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Oh BR, Hong WK, Heo SY, Joe MH, Seo JW, Kim CH (2013) The role of aldehyde/alcohol dehydrogenase (AdhE) in ethanol production from glycerol by Klebsiella pneumoniae. J Ind Microbiol Biotechnol 40(2):227–233. CrossRefPubMedGoogle Scholar
  26. 26.
    Maeda S, Shimizu K, Kihira C, Iwabu Y, Kato R, Sugimoto M, Fukiya S, Wada M, Yokota A (2017) Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions. J Biosci Bioeng 123(4):437–443. CrossRefPubMedGoogle Scholar
  27. 27.
    Baez A, Flores N, Bolivar F, Ramirez OT (2009) Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations. Biotechnol Bioeng 104(1):102–110. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wenjing Bao
    • 1
  • Renquan Wei
    • 1
  • Xuxia Liu
    • 1
  • Shufan Dong
    • 1
  • Tianyu Chen
    • 1
  • Shuilin Fu
    • 1
  • Heng Gong
    • 1
    Email author
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations