Clonal Dissemination of Clinical Isolates of Acinetobacter baumannii Carriers of 16S rRNA Methylase Genes in an Oncological Hospital in Recife, Brazil

  • Jussyêgles Niedja da Paz PereiraEmail author
  • Carlos Alberto das Neves de Andrade
  • Jailton Lobo da Costa Lima
  • Reginaldo Gonçalves de Lima Neto
  • Paulo Sérgio Ramos de Araújo
  • Maria Amélia Vieira Maciel


16S rRNA methylases confer high-level resistance to aminoglycosides which are used to treat serious infections caused by gram-negative bacteria, such as Acinetobacter spp. Some genes encoding these enzymes are disseminated worldwide, while others were detected in only some countries. The objective was to characterize the susceptibility profile to aminoglycosides (amikacin and gentamicin) of clinical isolates of Acinetobacter spp. from an oncological hospital in Recife, and given the resistance to both antimicrobials, to characterize minimal inhibitory concentrations (MICs) of amikacin, gentamicin and tobramycin, the occurrence of 16S rRNA methylase genes (armA, rmtB, rmtC and rmtD) and of ß-lactamase gene (blaKPC) and the clonal profile. Isolates resistant to both antimicrobials, amikacin and gentamicin, were selected by disk diffusion technique in Mueller–Hinton agar and identified. Broth microdilution was conducted to determine MICs of amikacin, gentamicin, and tobramycin. These isolates were subjected to polymerase chain reaction and pulsed-field gel electrophoresis. Among 23 analyzed isolates, 12 (52.2%) were resistant to gentamicin and amikacin and identified as Acinetobacter baumannii. Among these, 11 (91.7%), 12 (100%), and 9 (75%) isolates showed respectively MICs > 256 µg/mL of amikacin, > 64 µg/mL of gentamicin, and > 64 µg/mL of tobramycin. The armA gene was found in 12 (100%) isolates and 6 (50%) showed coexistence of armA, rmtB, and rmtC genes. The rmtD and blaKPC genes were not detected. These isolates showed high genetic similarity (92%) and were classified as clone A. Elaboration and fulfillment of measures are thus essential to prevent the spread of this resistance mechanism.



The authors are grateful to Danilo Elias Xavier, PhD, from the Institute Aggeu Magalhães, Fiocruz, Pernambuco, Brazil, for providing the positive controls used for the execution of the PCRs of 16S rRNA methylase genes. The authors are also grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for the financial support.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This study was approved by the Human Research Ethics Committee of Pernambuco Cancer Hospital (Certificate of Presentation for Ethical Appreciation—CAAE: 05554812.7000.5205).

Supplementary material

284_2019_1786_MOESM1_ESM.pdf (604 kb)
Electronic supplementary material 1 (PDF 605 kb)


  1. 1.
    Aghazadeh M, Rezaee MA, Nahaei MR et al (2013) Dissemination of aminoglycoside-modifying enzymes and 16S rRNA methylases among Acinetobacter baumannii and Pseudomomas aeruginosa isolates. Microb Drug Resist 19(4):282–288CrossRefGoogle Scholar
  2. 2.
    Bado I, Papa-Ezdra R, Delgado-Blas JF et al (2018) Molecular characterization of carbapenem-resistant Acinetobacter baumannii in the intensive care unit of Uruguay's University Hospital identifies the first rmtC gene in the species. Microb Drug Resist 24(7):1012–1019CrossRefGoogle Scholar
  3. 3.
    Bakour S, Touati A, Bachiri T et al (2014) First report of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and rapid spread of metallo-β-lactamase NDM-1 in Algerian hospitals. J Infect Chemother 20(11):696–701CrossRefGoogle Scholar
  4. 4.
    Bartoloni A, Sennati S, Di Maggio T et al (2016) Antimicrobial susceptibility and emerging resistance determinants (bla CTX-M, rmtB, fosA3) in clinical isolates from urinary tract infections in the Bolivian Chaco. Int J Infect Dis 43:1–6CrossRefGoogle Scholar
  5. 5.
    Berçot B, Poirel L, Nordmann P (2011) Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis 71(4):442–445CrossRefGoogle Scholar
  6. 6.
    Brigante G, Migliavacca R, Bramati S et al (2012) Emergence and spread of a multidrug-resistant Acinetobacter baumannii clone producing both the carbapenemase OXA-23 and the 16S rRNA methylase ArmA. J Med Microbiol 61(Pt 5):653–661CrossRefGoogle Scholar
  7. 7.
    Bueno MF, Francisco GR, O'Hara JA, Garcia DO, Doi Y (2013) Coproduction of 16S rRNA methyltransferase RmtD or RmtG with KPC-2 and CTX-M group extended-spectrum β-lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother 57(5): 2397–2400.CrossRefGoogle Scholar
  8. 8.
    Cavalcanti FL, Mirones CR, Paucar ER et al (2015) Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife. Brazil. Mem Inst Oswaldo Cruz 110(8):1003–1009CrossRefGoogle Scholar
  9. 9.
    Clinical and Laboratory Standards Institute (CLSI) (2016) Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100-S, vol 36, 26th edn. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  10. 10.
    Cornejo-Juárez P, Vilar-Compte D, Pérez-Jiménez C et al (2015) The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int J Infect Dis 31:31–34CrossRefGoogle Scholar
  11. 11.
    Corrêa LL, Witek MA, Zelinskaya N, Picão RC, Conn GL (2015) Heterologous expression and functional characterization of the exogenously acquired aminoglycoside resistance methyltransferases RmtD, RmtD2, and RmtG. Antimicrob Agents Chemother 60(1):699–702CrossRefGoogle Scholar
  12. 12.
    Costa PO, Atta EH, Silva AR (2015) Infection with multidrug-resistant gram-negative bacteria in a pediatric oncology intensive care unit: risk factors and outcomes. J Pediatr (Rio J) 91(5):435–441CrossRefGoogle Scholar
  13. 13.
    Doi Y, Garcia DO, Adams J, Paterson DL (2007) Coproduction of novel 16S rRNA methylase RmtD and metallo-β-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 51(3): 852–856.CrossRefGoogle Scholar
  14. 14.
    Doi Y, Ghilardi AC, Adams J, Garcia DO, Paterson DL (2007) High prevalence of Metallo-β-Lactamase and 16S rRNA methylase coproduction among imipenem-resistant Pseudomonas aeruginosa isolates in Brazil. Antimicrob Agents Chemother 51(9): 3388–3390.CrossRefGoogle Scholar
  15. 15.
    Doi Y, Wachino JI, Arakawa Y (2016) Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am 30(2): 523–537.CrossRefGoogle Scholar
  16. 16.
    El-Sayed-Ahmed MA, Amin MA, Tawakol WM et al (2015) High prevalence of bla NDM-1 carbapenemase-encoding gene and 16S rRNA armA methyltransferase gene among Acinetobacter baumannii clinical isolates in Egypt. Antimicrob Agents Chemother 59(6):3602–3605CrossRefGoogle Scholar
  17. 17.
    Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES (2008) Detection of methyltransferases conferring high-level resistance to aminoglycosides in enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother 52(5):1843–1845CrossRefGoogle Scholar
  18. 18.
    Jácome PRLA, Alves LR, Jácome-Júnior AT et al (2016) Detection of bla SPM-1, bla KPC, bla TEM and bla CTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections. J Med Microbiol 65(7): 658–665.CrossRefGoogle Scholar
  19. 19.
    Jin JS, Kwon KT, Moon DC, Lee JC (2009) Emergence of 16S rRNA methylase RmtA in colistin-only-sensitive Pseudomonas aeruginosa in South Korea. Int J Antimicrob Agents 33(5):490–491CrossRefGoogle Scholar
  20. 20.
    Karah N, Haldorsen B, Hermansen NO et al (2011) Emergence of OXA-carbapenemase and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. J Med Microbiol 60(Pt 4):515–521CrossRefGoogle Scholar
  21. 21.
    Kim JW, Heo ST, Jin JS et al (2008) Characterization of Acinetobacter baumannii carrying bla OXA-23, bla PER-1 and armA in a Korean hospital. Clin Microbiol Infect 14(7):716–718CrossRefGoogle Scholar
  22. 22.
    Lee H, Yong D, Yum JH et al (2006) Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumonie and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis 56(3):305–312CrossRefGoogle Scholar
  23. 23.
    Lima-Neto RG, Santos C, Lima N et al (2014) Application of MALDI-TOF MS for requalification of Candida clinical isolates culture collection. Braz J Microbiol 45(2):515–522CrossRefGoogle Scholar
  24. 24.
    Lincopan N, Neves P, Mamizuka EM, Levy CE (2010) Balanoposthitis caused by Pseudomonas aeruginosa co-producing metallo-β-lactamase and 16S rRNA methylase in children with hematological malignancies. Int J Infect Dis 14(4):e344–347CrossRefGoogle Scholar
  25. 25.
    Liu Z, Ling B, Zho L (2015) Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates. J Chemother 27(4):207–212CrossRefGoogle Scholar
  26. 26.
    Quiles MG, Rocchetti TT, Fehlberg LC et al (2015) Unusual association of NDM-1 with KPC-2 and armA among Brazilian Enterobacteriaceae isolates. Braz J Med Biol Res 48(2):174–177CrossRefGoogle Scholar
  27. 27.
    Ribot EM, Fitzgerald C, Kubota K, Swaminathan B, Barrett TJ (2001) Rapid Pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J Clin Microbiol 39(5):1889–1894CrossRefGoogle Scholar
  28. 28.
    Seifert H, Dolzani L, Bressan R et al (2005) Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol 43(9):4328–4335CrossRefGoogle Scholar
  29. 29.
    Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M et al (2017) Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J Infect Chemother 23(2):74–79CrossRefGoogle Scholar
  30. 30.
    Strateva T, Markova B, Markovska R et al (2011) Emergence of 16S rRNA methylase-producing nosocomial Acinetobacter baumannii isolates in a University Hospital in Bulgaria. J Chemother 23(6):374–375CrossRefGoogle Scholar
  31. 31.
    Strateva T, Markova B, Marteva-Proevska Y, Ivanova D, Mitov I (2012) Widespread dissemination of multidrug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase and ArmA 16S ribosomal RNA methylase in a Bulgarian university hospital. Braz J Infect Dis 16(3):307–310CrossRefGoogle Scholar
  32. 32.
    Tada T, Miyoshi-Akiyama T, Kato Y et al (2013) Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomomas aeruginosa isolates in hospitals in Vietnam. BMC Infect Dis 13:251–256CrossRefGoogle Scholar
  33. 33.
    Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T (2014) Dissemination of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and emergence of OXA-72 carbapenemase coproducers in Japan. Antimicrob Agents Chemother 58(5):2916–2920CrossRefGoogle Scholar
  34. 34.
    Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wen JT, Zhou Y, Yang L, Xu Y (2014) Multidrug-resistant genes of aminoglycoside-modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii strains. Genet Mol Res 13(2):3842–3849CrossRefGoogle Scholar
  36. 36.
    Xiao SZ, Han LZ, Chu HQ et al (2015) Detection of aminoglycoside resistance related genes in multidrug-resistant Acinetobacter baumannii isolated from a single institute of Shanghai, China. Panminerva Med 57(1):49–53PubMedGoogle Scholar
  37. 37.
    Yamane K, Wachino J, Doi Y, Kurokawa H, Arakawa Y (2005) Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis 11(6): 951–953.CrossRefGoogle Scholar
  38. 38.
    Yamane K, Wachino J, Suzuki S et al (2007) 16S rRNA methylase-producing, gram-negative pathogens, Japan. Emerg Infect Dis 13(4):642–646CrossRefGoogle Scholar
  39. 39.
    Yokoyama K, Doi Y, Yamane K et al (2003) Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 362(9399): 1888–1893.CrossRefGoogle Scholar
  40. 40.
    Zhou Y, Yu H, Guo Q et al (2010) Distribution of 16S rRNA methylases among different species of gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis 29(11):1349–1353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jussyêgles Niedja da Paz Pereira
    • 1
    Email author
  • Carlos Alberto das Neves de Andrade
    • 2
  • Jailton Lobo da Costa Lima
    • 1
  • Reginaldo Gonçalves de Lima Neto
    • 1
  • Paulo Sérgio Ramos de Araújo
    • 1
    • 2
  • Maria Amélia Vieira Maciel
    • 1
  1. 1.Departamento de Medicina Tropical/Universidade Federal de PernambucoRecifeBrazil
  2. 2.Instituto Aggeu Magalhães RecifeBrazil

Personalised recommendations