Advertisement

Paraclostridium is the Main Genus of Anaerobic Bacteria Isolated from New Species of the Marine Sponge Plakina in the Brazilian Southeast Coast

  • Bruno Francesco Rodrigues de Oliveira
  • Mellissa D’Avila Cavalcanti
  • Suzanne de Oliveira Nunes
  • Leandro Araujo Lobo
  • Regina Maria Cavalcanti Pilotto Domingues
  • Guilherme Muricy
  • Marinella Silva LaportEmail author
Article

Abstract

Despite the broad assessment of sponge bacterial diversity through cultivation-independent and dependent strategies, the knowledge focusing on cultivable anaerobes from this holobiont is still incipient. Plakina is a genus with the highest number of described species from the smallest of poriferan classes, Homoscleromorpha. The Brazilian Atlantic coast has been presenting itself as a hotspot for the discovery of new plakinidae species, with initial surveys just now concerning to characterize their microbiome. The current study aimed to isolate and identify strict anaerobes from recently described species of Plakina collected at the coast of Cabo Frio, RJ. Samples of four sympatric morphotypes of Plakina cyanorosea and Plakina cabofriense were collected on the coast of Cabo Frio, RJ. Using five different culture media, a total of 93 bacterial isolates were recovered, among which 60 were strict anaerobes and, ultimately, 34 remaining viable. A total of 76.5% from these strains were mostly identified as Clostridium bifermentans by mass spectrometry and 82.4% identified by 16S rRNA sequencing, almost all of them affiliated to the genus Paraclostridium, and with one isolate identified as Clostridium butyricum by both techniques. None of the anaerobic bacteria exhibited antimicrobial activity by the adopted screening test. The present work highlights not only the need for cultivation and characterization of the anaerobic microbiota from marine sponges but also adds the existing scarce knowledge of culturable bacterial communities from Homoscleromorph sponges from Brazilian coast.

Notes

Acknowledgments

The research for this present work was financially supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, Grant Numbers E-26/102.970/2012 and E-26/203.320/2017), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Programa de Excelência Acadêmica (CAPES ProEx Grant Number 23038.002486/2018-26) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Numbers 448625/2014-8 and 304477/2015-0). MDC was recipient of undergraduate scholarship from CNPq [PIBIC-UFRJ] and BFRO is recipient of doctoral scholarship from CNPq [Grant 140840/2018-4]. GM thanks CAPES, CNPq and FAPERJ for grants and fellowships. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Hatti-Kaul R, Mattiasson B (2016) Anaerobes in industrial- and environmental biotechnology. In: Hatti-Kaul R, Mamo G, Mattiasson B (eds) Anaerobes in biotechnology Advances in biochemical engineering/biotechnology. Springer, Cham, pp 1–33.  https://doi.org/10.1007/10_2016_10 Google Scholar
  2. 2.
    Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genom Med 8:51.  https://doi.org/10.1186/s13073-016-0307-y CrossRefGoogle Scholar
  3. 3.
    Haas F, Konig H (1987) Characterisation of an anaerobic symbiont and the associated aerobic bacterial flora of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). FEMS Microbiol Ecol 45(2):99–106.  https://doi.org/10.1016/0378-1097(87)90031-0 CrossRefGoogle Scholar
  4. 4.
    Thong-On A, Suzuki K, Noda S, Inoue J, Kajiwara S, Ohkuma M (2012) Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes Environ 27(2):186–192.  https://doi.org/10.1264/jsme2.ME11325 CrossRefGoogle Scholar
  5. 5.
    Babarro J, De Zwaan A (2008) Anaerobic survival potential of four bivalves from different habitats. A comparative survey. Comp Biochem Physiol A 151(1):108–113.  https://doi.org/10.1016/j.cbpa.2008.06.006 CrossRefGoogle Scholar
  6. 6.
    Brück W, Brück T, Self W, Reed J, Nitecki S, McCarthy P (2010) Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME J 4(5):686–699.  https://doi.org/10.1038/ismej.2009.149 CrossRefGoogle Scholar
  7. 7.
    Thomas T, Moitinho-Silva L, Lurgi M, Bjo¨rk JR, Easson C, Astudillo-Garcı´a C, Olson JB, Erwin PM, Lopez-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor-Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 16:11870.  https://doi.org/10.1038/ncomms11870 CrossRefGoogle Scholar
  8. 8.
    Hentschel U, Piel J, Degnan S, Taylor M (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10(9):641–654.  https://doi.org/10.1038/nrmicro2839 CrossRefGoogle Scholar
  9. 9.
    Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005) An anaerobic world of sponges. Geomicrobiol J 22(1–2):1–10.  https://doi.org/10.1080/01490450590922505 CrossRefGoogle Scholar
  10. 10.
    Hoffmann F, Røy H, Bayer K, Hentschel U, Pfannkuchen M, Breummer F, Beer D (2008) Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba. Mar Biol 153(6):1257–1264.  https://doi.org/10.1007/s00227-008-0905-3 CrossRefGoogle Scholar
  11. 11.
    Schumann-Kindel G, Bergbauer M, Manz W, Szewyk U, Reitner J (1997) Aerobic and anaerobic microorganisms in modern sponges: a possible relationship to fossilization-processes. Facies 36:268–272Google Scholar
  12. 12.
    Moitinho-Silva L, Díez-Vives C, Batani G, Esteves A, Jahn M, Thomas T (2017) Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J 11(7):1651–1666.  https://doi.org/10.1038/ismej.2017.25 CrossRefGoogle Scholar
  13. 13.
    Pita L, Rix L, Slaby B, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6(46):1.  https://doi.org/10.1186/s40168-018-0428-1 Google Scholar
  14. 14.
    Laport M (2018) Isolating bacteria from sponges: why and how? Curr Pharm Biotechnol 18(15):1224–1236.  https://doi.org/10.2174/1389201019666180329111327 CrossRefGoogle Scholar
  15. 15.
    Lavy A, Keren R, Haber M, Schwartz I, Ilan M (2013) Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria. FEMS Microbiol Ecol 87(2):486–502.  https://doi.org/10.1111/1574-6941.12240 CrossRefGoogle Scholar
  16. 16.
    Boury-Esnault N, Lavrov DV, Ruiz CA, Pérez T (2013) The integrative taxonomic approach applied to Porifera: a case study of the Homoscleromorpha. Integr Comp Biol 53(3):416–427.  https://doi.org/10.1093/icb/ict042 CrossRefGoogle Scholar
  17. 17.
    Domingos C, Lage A, Muricy G (2016) Overview of the biodiversity and distribution of the Class Homoscleromorpha in the Tropical Western Atlantic. J Mar Biol Assoc UK 96(2):379–389.  https://doi.org/10.1017/S0025315415000375 CrossRefGoogle Scholar
  18. 18.
    Domingos C, Moraes F, Muricy G (2013) Four new species of Plakinidae (Porifera: Homoscleromorpha) from Brazil. Zootaxa 3718(6):530–544.  https://doi.org/10.11646/zootaxa.3718.6.2 CrossRefGoogle Scholar
  19. 19.
    Muricy G, Domingos C, Lage A, Lanna E, Hardoim C, Laport M, Zilberberg C (2018) Integrative taxonomy widens our knowledge of the diversity, distribution and biology of the genus Plakina (Homosclerophorida: Plakinidae). Invertebr Syst.  https://doi.org/10.1071/IS18027 Google Scholar
  20. 20.
    Laport M, Bauwens M, de Oliveira Nunes S, Willenz P, George I, Muricy G (2017) Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions. Antonie Van Leeuwenhoek 110(4):489–499.  https://doi.org/10.1007/s10482-016-0818-y CrossRefGoogle Scholar
  21. 21.
    Rodrigues N, Bronzato G, Santiago G, Botelho L, Moreira B, Coelho I, Souza M, Coelho S (2017) The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) identification versus biochemical tests: a study with enterobacteria from a dairy cattle environment. Braz J Microbiol 48(1):132–138.  https://doi.org/10.1016/j.bjm.2016.07.025 CrossRefGoogle Scholar
  22. 22.
    Laport MS, Santos-Gandelman JF, Muricy G Giambiagi-deMarval M, George I (2016) Antagonistic interactions among bacteria isolated from either the same or from different sponges native to the Brazilian coast. J Mar Sci Res Dev 6:185.  https://doi.org/10.4172/2155-9910.1000185 CrossRefGoogle Scholar
  23. 23.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703.  https://doi.org/10.1128/jb.173.2.697-703.1991 CrossRefGoogle Scholar
  24. 24.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196.  https://doi.org/10.1093/nar/gkm864 CrossRefGoogle Scholar
  25. 25.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msy096 CrossRefGoogle Scholar
  26. 26.
    Marinho PR, Moreira AP, Pellegrino FL, Muricy G, Bastos MC, Santos KR, Giambiagi-deMarval M, Laport MS (2009) Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. MIOC 104(5):678–682.  https://doi.org/10.1590/S0074-02762009000500002 Google Scholar
  27. 27.
    Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(Pt 2):346–351.  https://doi.org/10.1099/ijs.0.059774-0 CrossRefGoogle Scholar
  28. 28.
    Imhoff JF, Truper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microb Ecol 3(1):1–9.  https://doi.org/10.1007/BF02011449 CrossRefGoogle Scholar
  29. 29.
    Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35(3):305–312.  https://doi.org/10.1111/j.1574-6941.2001.tb00816.x CrossRefGoogle Scholar
  30. 30.
    Sipkema D, Schippers K, Maalcke WJ, Yang Y, Salim S, Blanch HW (2011) Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol 77(6):2130–2140.  https://doi.org/10.1128/AEM.01203-10 CrossRefGoogle Scholar
  31. 31.
    Jensen S, Fortunato SA, Hoffmann F, Hoem S, Rapp HT, Øvreås L, Torsvik VL (2016) The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle. Microb Ecol 73(3):668–676.  https://doi.org/10.1007/s00248-016-0836-3 CrossRefGoogle Scholar
  32. 32.
    Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L, Banfield JF, Ilan M (2018) A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 20(2):800–814.  https://doi.org/10.1111/1462-2920 CrossRefGoogle Scholar
  33. 33.
    Santos OC, Pontes PV, Santos JF, Muricy G, Giambiagi-deMarval M, Laport MS (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res Microbiol 161(7):604–612.  https://doi.org/10.1016/j.resmic.2010.05.013 CrossRefGoogle Scholar
  34. 34.
    Santos-Gandelman JF, Santos OC, Pontes PV, Andrade CL, Korenblum E, Muricy G, Giambiagi-Demarval M, Laport MS (2013) Characterization of cultivable bacteria from Brazilian sponges. Mar Biotechnol (NY) 15(6):668–676.  https://doi.org/10.1007/s10126-013-9518-z CrossRefGoogle Scholar
  35. 35.
    Webb MD, Pin C, Peck MW, Stringer SC (2007) Historical and Contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic Clostridium botulinum. Appl Environ Microbiol 73(7):2118–2127.  https://doi.org/10.1128/AEM.01744-06 CrossRefGoogle Scholar
  36. 36.
    Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13(4):583–594.  https://doi.org/10.1007/s00792-009-0261-3 CrossRefGoogle Scholar
  37. 37.
    Nagy E, Boyanova L, US Justesen, ESCMID Study Group of Anaerobic Infections (2018) How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories? Clin Microbiol Infect.  https://doi.org/10.1016/j.cmi.2018.02.008 Google Scholar
  38. 38.
    Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44(4):812–826.  https://doi.org/10.1099/00207713-44-4-812 CrossRefGoogle Scholar
  39. 39.
    Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gram-negative spore-formers and other misplaced clostridia. Environ Microbiol 15(10):2631–2641.  https://doi.org/10.1111/1462-2920 Google Scholar
  40. 40.
    Sasi Jyothsna T, Tushar L, Sasikala C, Ramana C (2016) Paraclostridium benzoelyticum gen nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int J Syst Evol Microbiol 66(3):1268–1274.  https://doi.org/10.1099/ijsem.0.000874 CrossRefGoogle Scholar
  41. 41.
    Lawson PA, Citron DM, Tyrrell KL, Finegold SM (2016) Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40:95–99.  https://doi.org/10.1016/j.anaerobe.2016.06.008 CrossRefGoogle Scholar
  42. 42.
    Galperin MY, Bover V, Tolstoy I, Yutin N (2016) Phylogenomic analysis of the family Peptostreptococcaceae (Clostridium cluster XI) and proposal for reclassification of Clostridium litorale (Fendrich et al. 1991) and Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridium litorale gen. nov. comb. nov. and Peptoclostridium acidaminophilum comb. nov. Int J Syst Evol Microbiol 66(12):5506–5513.  https://doi.org/10.1099/ijsem.0.001548 CrossRefGoogle Scholar
  43. 43.
    Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791.  https://doi.org/10.3389/fmicb.2015.00791 CrossRefGoogle Scholar
  44. 44.
    Schaumann R, Dallacker-Losensky K, Rosenkranz C, Genzel GH, Stîngu CS, Schellenberger W, Schulz-Stübner S, Rodloff AC, Eschrich (2018) Discrimination of human pathogen Clostridium species especially of the heterogeneous C. sporogenes and C. botulinum by MALDI-TOF Mass Spectrometry. Curr Microbiol 75(11):1506–1515.  https://doi.org/10.1007/s00284-018-1552-7 CrossRefGoogle Scholar
  45. 45.
    Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by Intact-Cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67:539–548.  https://doi.org/10.1007/s00253-004-1812-2 CrossRefGoogle Scholar
  46. 46.
    Dieckmann R, Strauch E, Alter T (2010) Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol 109:199–211.  https://doi.org/10.1111/j.1365-2672.2009.04647.x Google Scholar
  47. 47.
    Emami K, Nelson A, Hack E, Zhang J, Green DH, Caldwell GS, Mesbahi E (2016) MALDI-TOF mass spectrometry discriminates known species and marine environmental isolates of Pseudoalteromonas. Front Microbiol 7:104.  https://doi.org/10.3389/fmicb.2016.00104 CrossRefGoogle Scholar
  48. 48.
    Ng HJ, Webb HK, Crawford RJ, Malherbe F, Butt H, Knight R, Mikhailov VV, Ivanova EP (2013) Updating the taxonomic toolbox: classification of Alteromonas spp. using multilocus phylogenetic analysis and MALDI-TOF mass spectrometry. Antonie van Leeuwenhoek 103(2):265–275.  https://doi.org/10.1007/s10482-012-9807-y CrossRefGoogle Scholar
  49. 49.
    Rahi P, Prakash O, Shouche YS (2016) Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol 7:1359.  https://doi.org/10.3389/fmicb.2016.01359 CrossRefGoogle Scholar
  50. 50.
    Tushar L, Sasi Jyothsna TS, Sasikala C, Ramana CV (2015) Draft genome sequence of antimicrobial-producing Clostridium sp. JC272, isolated from marine sediment. Genome Announc 3(3):e00650-15.  https://doi.org/10.1128/genomea.00650-15 CrossRefGoogle Scholar
  51. 51.
    Kok MS (2015) An integrated approach: advances in the use of Clostridium for biofuel. Biotechnol Genet Eng Rev 31(1–2):69–81.  https://doi.org/10.1080/02648725.2016.1168075 CrossRefGoogle Scholar
  52. 52.
    Leja K, Myszka K, Olejnik-Schmidt AK, Juzwa W, Czaczyk K (2014) Selection and characterization of Clostridium bifermentans strains from natural environment capable of producing 1,3-propanediol under microaerophilic conditions. AJMR 8(11):1187–1197.  https://doi.org/10.5897/AJMR213.6516 Google Scholar
  53. 53.
    Myszka K, Leja K, Olejnik-Schmidt AK, Czaczyk K (2012) Isolation process of industrially useful Clostridium bifermentans from natural samples. J Biosci Bioeng 113(5):631–633.  https://doi.org/10.1016/j.jbiosc.2012.01.003 CrossRefGoogle Scholar
  54. 54.
    Leja K, Myszka K, Czaczyk K (2013) The ability of Clostridium bifermentans strains to lactic acid biosynthesis in various environmental conditions. Springerplus 2(1):44.  https://doi.org/10.1186/2193-1801-2-44 CrossRefGoogle Scholar
  55. 55.
    Zhang S, Kim TH, Lee Y, Hwang SJ (2012) Effects of VFAs concentration on bio-hydrogen production with Clostridium bifermentans 3AT-ma. Energia Procedia 14:518–523.  https://doi.org/10.1016/j.egypro.2011.12.968 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bruno Francesco Rodrigues de Oliveira
    • 1
  • Mellissa D’Avila Cavalcanti
    • 1
  • Suzanne de Oliveira Nunes
    • 1
  • Leandro Araujo Lobo
    • 1
  • Regina Maria Cavalcanti Pilotto Domingues
    • 1
  • Guilherme Muricy
    • 2
  • Marinella Silva Laport
    • 1
    Email author
  1. 1.Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Museu NacionalUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations