Nannochloropsis sp. and Spirulina sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium graminearum Species Complex

  • Priscila Tessmer ScaglioniEmail author
  • Fernanda Arnhold Pagnussatt
  • Andressa Cunha Lemos
  • Camila Primieri Nicolli
  • Emerson M. Del Ponte
  • Eliana Badiale-Furlong
Review Article


Phenolic (free, conjugated and bound) and carotenoid extracts from microalgae Nannochloropsis sp. and Spirulina sp. were investigated regarding their potential to mitigate contamination by Fusarium complex fungal pathogens. Free phenolic acid extracts from both microalgae were the most efficient, promoting the lowest mycelial growth rates of 0.51 cm day− 1 (Spirulina sp.) and 0.78 cm day− 1 (Nannochloropsis sp.). An experiment involving natural free phenolic acid extracts and synthetic solutions was carried out based on the natural phenolic acid profile. The results revealed that the synthetic mixtures of phenolic acids from both microalgae were less efficient than the natural extracts at inhibiting fungal growth, indicating that no purification is required. The half-maximal effective concentration (EC50) values of 49.6 μg mL− 1 and 33.9 μg mL− 1 were determined for the Nannochloropsis and Spirulina phenolic acid extracts, respectively. The use of phenolic extracts represents a new perspective regarding the application of compounds produced by marine biotechnology to prevent Fusarium species contamination.



The authors thank the Programa de Pós-Graduação em Engenharia e Ciência de Alimentos (FURG) and CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico for supported this study by the Project 472633/2012.

Compliance with Ethical Standards

Conflict of interest

Authors have no conflict of interest.


  1. 1.
    Atanasova-Penichon V, Barreauand C, Richard-Forget F (2016) Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol 22:7–566. Google Scholar
  2. 2.
    Baskaran R, Pullencheri D, Somasundaram R (2016) Characterization of free, esterified and bound phenolics in custard apple (Annona squamosa L) fruit pulp by UPLC–ESI–MS/MS. Food Res Int 82:121–127. CrossRefGoogle Scholar
  3. 3.
    Borges L, Morón-Villarreyes JA, D’Oca MGM, Abreu PC (2011) Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy 35:4449–4454. CrossRefGoogle Scholar
  4. 4.
    Cipolatti EP, Bulsing BA, Sá CS, Burkert CAV, Badiale-Furlong E, Burkert JFM (2015) Carotenoids from Phaffia rhodozyma: antioxidant activity and stability of extracts. Afr J Biotechnol 14(23):1982–1988. CrossRefGoogle Scholar
  5. 5.
    Del Ponte E, Spolti P, Ward T, Gomes LB, Nicolli CP, Kuhnem PR, Silva CN, Tessmann DJ (2015) Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 105:246–254. CrossRefPubMedGoogle Scholar
  6. 6.
    Dors GC, Caldas SS, Fagundes CAA, Primel EG, Badiale-Furlong E (2013) Fungicides and the effects on mycotoxins on milling fractions of irrigated rice. J Agric Food Chem 61:1985–1999. CrossRefPubMedGoogle Scholar
  7. 7.
    Freitas RF, Schrack EC, He Q, Silliman BR, Furlong EB, Telles AC, Costa CSB (2016) Consumer control of the establishment of marsh foundation plants in intertidal mudflats‎. Mar Ecol Prog Ser 547:79–89. CrossRefGoogle Scholar
  8. 8.
    Gomes LB, Ward TJ, Furlong EB, Del Ponte EM (2015) Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathol 64:980–987. CrossRefGoogle Scholar
  9. 9.
    Gutarowska B, Zakowska Z (2009) Mathematical models of mycelium growth and ergosterol synthesis in stationary mould culture. Lett Appl Microbiol 48:605–610. CrossRefPubMedGoogle Scholar
  10. 10.
    Heidtmann-Bemvenuti R, Tralamazza SM, Ferreira CFJ, Corrêa B, Badiale-Furlong E (2016) Effect of natural compounds on Fusarium graminearum complex. J Sci Food Agric 96(12):3998–4008. CrossRefPubMedGoogle Scholar
  11. 11.
    Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, AmesCrossRefGoogle Scholar
  12. 12.
    Millao S, Uquiche E (2016) Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: correlation with its content of carotenoids and tocopherols. J Supercrit Fluids 111:143–150. CrossRefGoogle Scholar
  13. 13.
    Morais MG, Radmann EM, Andrade MR, Teixeira GG, Brusch LRF, Costa JAV (2009) Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture 294:60–64. CrossRefGoogle Scholar
  14. 14.
    Nguefack J, Leth V, Amvam Zollo PH, Mathur SB (2004) Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. Int J Food Microbiol 94:329–334. CrossRefPubMedGoogle Scholar
  15. 15.
    Pagnussatt FA, Del Ponte EM, Garda-Buffon J, Badiale-Furlong E (2014) Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pestic Biochem Physiol 108:21–26. CrossRefPubMedGoogle Scholar
  16. 16.
    Pagnussatt FA, de Lima VR, Dora CL, Costa JAV, Putaux JL, Badiale-Furlong E (2016) Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food Chem 211:616–623. CrossRefPubMedGoogle Scholar
  17. 17.
    Pagnussatt FA, Kupski L, Darley FT, Filoda PF, Del Ponte EM, Garda-Buffon J, Badiale-Furlong E (2013) Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp. Ciênc Tecnol Aliment 33:75–80. CrossRefGoogle Scholar
  18. 18.
    Paliwal C, Ghosh T, George B, Pancha I, Maurya R, Chokshi K, Ghosh A, Mishra S (2016) Microalgal carotenoids: potential nutraceutical compounds with chemotaxonomic importance. Algal Res 15:24–31. CrossRefGoogle Scholar
  19. 19.
    Quideau S, Deffieux D, Douat-Casassus C, Pouyégu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed (Engl) 50:586–621. CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in food. Human Nutrition Institute—International Life Sciences Institute, Washington, DCGoogle Scholar
  21. 21.
    Scaglioni PT, Badiale-Furlong E (2017) Can microalgae act as source of preservatives in food chain? J Food Sci Eng 7:283–296. Google Scholar
  22. 22.
    Scaglioni PT, Blandino M, Scarpino V, Giordano D, Testa G, Furlong EB (2018) Application of fungicides and microalgal phenolic extracts for the direct control of Fumonisin contamination in maize. J Agric Food Chem 66:4835–4841. CrossRefPubMedGoogle Scholar
  23. 23.
    Scaglioni PT, de Garcia SO, Badiale-Furlong E (2018) Inhibition of in vitro trichothecenes production by microalgae phenolic extracts. Food Res Int. Google Scholar
  24. 24.
    Scaglioni PT, Quadros L, Paula M, Furlong VB, Abreu PC, Furlong EB (2018) Inhibition of enzymatic and oxidative process by phenolic extracts from Spirulina sp. and Nannochloropsis sp. Food Technol Biotechnol 56:16. CrossRefGoogle Scholar
  25. 25.
    Shao Y, Pan J, Zhang C, Jiang L, He Y (2015) Detection in situ of carotenoid in microalgae by transmission spectroscopy. Comput Electron Agric 112:121–127. CrossRefGoogle Scholar
  26. 26.
    Shukla R, Singh P, Prakash B, Dubey NK (2012) Antifungal, aflatoxin inhibition and antioxidant activity of Callistemon lanceolatus (Sm.) sweet essential oil and its major component 1,8-cineole against fungal isolates from chickpea seeds. Food Control 25:27–33. CrossRefGoogle Scholar
  27. 27.
    Singh A, Bajpai V, Kumar S, Kumar B, Srivastava M, Rameshkumar KB (2016) Comparative profiling of phenolic compounds from different plant parts of six Terminalia species by liquid chromatography–tandem mass spectrometry with chemometric analysis. Ind Crops Prod 87:236–246. CrossRefGoogle Scholar
  28. 28.
    Skroza D, Mekinic IG, Svilovic S, Simat V, Katalinic V (2015) Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: a case of binary phenolic mixtures. J Food Compos Anal 38:13–18. CrossRefGoogle Scholar
  29. 29.
    Souza MM, Prietto L, Ribeiro AC, Souza TD, Badiale-Furlong E (2011) Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciênc Agrotecnol 35(6):1050–1058. CrossRefGoogle Scholar
  30. 30.
    Stanisz E, Zgola-Grzeskowiak A, Waskiewicz A, Stepien L, Beszterda M (2015) Can ergosterol be an indicator of Fusarium fungi and mycotoxins in cereal products? J Braz Chem Soc 26:705–712. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Priscila Tessmer Scaglioni
    • 1
    • 4
    Email author
  • Fernanda Arnhold Pagnussatt
    • 2
  • Andressa Cunha Lemos
    • 1
  • Camila Primieri Nicolli
    • 3
  • Emerson M. Del Ponte
    • 3
  • Eliana Badiale-Furlong
    • 1
  1. 1.Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de AlimentosUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Universidade Federal do Rio Grande (FURG)Santo Antônio da PatrulhaBrazil
  3. 3.Universidade Federal de Viçosa (UFV)ViçosaBrazil
  4. 4.Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Controle de Contaminantes em BiomateriaisUniversidade Federal de Pelotas (UFPel)PelotasBrazil

Personalised recommendations