Advertisement

Volatile Compounds Produced by Cyanobacteria Isolated from Mangrove Environment

  • Lorene Armstrong
  • Marcelo Gomes Marçal Vieira Vaz
  • Diego Bonaldo Genuário
  • Marli Fátima Fiore
  • Hosana Maria DebonsiEmail author
Article
  • 98 Downloads

Abstract

Cyanobacterial communities from the Brazilian Atlantic coast have been recently sampled through cultured and non-cultured approaches. The maintenance of cyanobacterial strains in laboratory cultures is an important source of material for biological and chemical evaluation as well as biotechnological investigations. In this way, this work aimed to identify, for the first time, by means of GC–MS analyses, the nonpolar chemical profiles of four morphologically distinct cyanobacterial strains: Cyanobium sp. CENA178, Cyanobium sp. CENA181, Oxynema sp. CENA135 and Nostoc sp. CENA175, which were previously isolated from Brazilian mangroves. Six distinct classes of volatile compounds were identified: acids, alcohols, fatty aldehydes, esters, ketones and aliphatic hydrocarbons, from which 12 compounds were detected. The predominant compounds were 1-octadecyne and tetradecanoic acid, obtained from Oxynema sp. CENA135 and; the last one being also observed in Cyanobium sp. CENA181. In addition, the aliphatic hydrocarbon heptadecane was produced by these cyanobacterial strains as well as by Nostoc sp. CENA175. The compounds produced by the studied cyanobacteria have already been reported as possessing pharmaceutical properties such as antioxidant, cytotoxic and antimicrobial activities, besides industrial importance as source of intermediates for biofuel production. It is also important to mention that, considering the number of non-identified compounds, which were not compatible with the searched databases, these strains are promising sources of new compounds, denoting the need for more studies. Accordingly, since these strains were isolated from saline or brackish waters, it is also expected that they might be cultivated in waters not used for human consumption, enabling a low-cost approach for biomass and metabolites production.

Notes

Acknowledgements

L.A. was supported by the Brazilian National Council for Scientific and Technological Development for a doctoral scholarship (CNPq 140090/2013-4). M.G.M.V.V. was supported by post-doctoral scholarships from CAPES/FAPEMIG (BPD-00514-14) and from CAPES (PNPD-1638006). This work was supported by grant 2011/50836-2 from the State of São Paulo Research Foundation (FAPESP). We thank Izabel Cristina Casanova Turatti (Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP) for operating the GC-MS and Dr. Norberto Peporine Lopes (FCFRP-USP) for providing available equipment.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

284_2019_1658_MOESM1_ESM.pdf (608 kb)
Supplementary material 1 (PDF 607 KB)

References

  1. 1.
    Ministério do Meio Ambiente (MMA)- Ministry of Environment. Zona costeira e marinha (2018) http://www.mma.gov.br/biodiversidade/biodiversidade-aquatica/zona-costeira-e-marinha. Accessed 27 Oct 2018
  2. 2.
    Cunha-Lignon M, Menghini RP, Santos LCM, Niemeyer-Dinola C, Schaeffer-Novelli Y (2009) Case studies in the mangroves of the State of São Paulo (Brazil): application of tools with different spatial and temporal scale. J Integr Coast Zone Manag 9:79–91Google Scholar
  3. 3.
    Schaeffer-Novelli Y, Cintrón-Molero G, Soares MLG, De-Rosa T (2000) Brazilian mangroves. Aquat Ecosyst Health Manage 3:561–570.  https://doi.org/10.1016/S1463-4988(00)00052-X CrossRefGoogle Scholar
  4. 4.
    Silva CSP, Genuário DB, Vaz MGMV, Fiore MF (2014) Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 37:100–112.  https://doi.org/10.1016/j.syapm.2013.12.003 CrossRefGoogle Scholar
  5. 5.
    Governo do estado de São Paulo (2018) Litoral de SP tem mais de 600 km de extensão banhados pelo Atlântico. http://www.saopaulo.sp.gov.br/spnoticias/ultimas-noticias/litoral-de-sp-tem-mais-de-600-km-de-extensao-banhados-pelo-atlantico/. Accessed 27 Oct 2018
  6. 6.
    Engene N, Cameron Coates R, Gerwick WH (2010) 16S rRna gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46:591–601.  https://doi.org/10.1111/j.1529-8817.2010.00840.x CrossRefGoogle Scholar
  7. 7.
    Oscillatoriales (2013) Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. Cyanoprokaryota) J Phycol 49:1095–1106.  https://doi.org/10.1111/jpy.12115 nov.CrossRefGoogle Scholar
  8. 8.
    Seymour JR (2014) A sea of microbes: the diversity and activity of marine microorganisms. Microbiol Aust 183–187.  https://doi.org/10.1071/MA14060
  9. 9.
    Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9(1):e85140.  https://doi.org/10.1371/journal.pone.0085140 CrossRefGoogle Scholar
  10. 10.
    Lea-Smith DJ, Ortiz-Suarez ML, Lenn T, Nümberg DJ, Baers LL, Davey MP, Parolini L, Huber RG, Cotton CAR, Mastroianni G, Bombelli P, Ungerer P, Stevens TJ, Smith AG, Bond PJ, Mullineaux CW, Howe CJ (2016) Hydrocarbons are essential for optimal cell size, division and growth of cyanobacteria. Plant Physiol 172:1928–1940.  https://doi.org/10.1104/pp.16.01205 CrossRefGoogle Scholar
  11. 11.
    Sorigué D, Légeret B, Cuiné S, Morales P, Mirabella B, Geneviève G, Li-Beisson Y, Jetter R, Peltier G, Beisson F (2016) Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol 171(4):2393–2395.  https://doi.org/10.1104/pp.16.00462 Google Scholar
  12. 12.
    Liu A, Zhu T, Lu X, Song L (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393.  https://doi.org/10.1016/j.apenergy.2013.05.008 CrossRefGoogle Scholar
  13. 13.
    Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2014) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521–1529.  https://doi.org/10.1007/s00253-014-6286-2 CrossRefGoogle Scholar
  14. 14.
    Angermayr SA, Rovira AG, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33:352–361.  https://doi.org/10.1016/j.tibtech.2015.03.009 CrossRefGoogle Scholar
  15. 15.
    Gao X, Sun T, Pei G, Pei G, Chen L, Zhang W (2016) Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 100:3401–3413.  https://doi.org/10.1007/s00253-016-7374-2 CrossRefGoogle Scholar
  16. 16.
    Heimann K (2016) Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr Opin Biotechnol 38:183–189.  https://doi.org/10.1016/j.copbio.2016.02.024 CrossRefGoogle Scholar
  17. 17.
    Brito Â, Ramos V, Mota R et al (2017) Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol Phylogenet Evol.  https://doi.org/10.1016/j.ympev.2017.03.006 Google Scholar
  18. 18.
    Caires TA, de Mattos Lyra G, Hentschke GS, de Gusmão Pedrini A, Sant’Anna CL, de Castro Nunes JM (2017) Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): A new filamentous benthic marine taxon widely distributed along the Brazilian coast. Mol Phylogenet Evol 120:196–211.  https://doi.org/10.1016/j.ympev.2017.12.009 CrossRefGoogle Scholar
  19. 19.
    Caires TA, da Silva AMS, Vasconcelos VM, Affe HMJ, de Souza Neta LC, Boness HVM, Sant’Anna CL, Nunes JMC (2018) Biotechnological potential of Neolyngbya (Cyanobacteria), a new marine benthic filamentous genus from Brazil. Algal Res 36:1–9.  https://doi.org/10.1016/j.algal.2018.10.001 CrossRefGoogle Scholar
  20. 20.
    Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani. and Botrytis cinerea. Biol Control 105:27–39.  https://doi.org/10.1016/j.biocontrol.2016.11.007 CrossRefGoogle Scholar
  21. 21.
    Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69.  https://doi.org/10.1186/1754-6834-6-69 CrossRefGoogle Scholar
  22. 22.
    Silva-Stenico ME, Vieira FDP, Genuário DB, Silva CSP, Moraes LAB, Fiore MF (2012) Decolorization of textile dyes by cyanobacteria. J Braz Chem Soc 23(10):1863–1870.  https://doi.org/10.1590/S0103-50532012005000058 CrossRefGoogle Scholar
  23. 23.
    Naman CB, Rattan R, Nikoulina SE, Lee J, Miller BW, Moss NA, Armstrong L, Boudreau PD, Debonsi HM, Valeriote FA, Dorrestein PC, Gerwick WH (2017) Integrating molecular networking and biological assays to target the isolation of a cytotoxic cyclic octapeptide, samoamide A, from an American Samoan marine cyanobacterium. J Nat Prod 80(3):625–633.  https://doi.org/10.1021/acs.jnatprod.6b00907 CrossRefGoogle Scholar
  24. 24.
    Evans WG (1994) Volatile organic chemicals of a shore-dwelling cyanobacterial mat community. J Chem Ecol.  https://doi.org/10.1007/BF02064432 Google Scholar
  25. 25.
    Samejo Q, Memon S, Bangher MI, Khan KM (2013) Essential oil constituents in fruit and stem of Calligonum polygonoides. Ind Crops Prod 45:293–295.  https://doi.org/10.1016/j.indcrop.2013.01.001 CrossRefGoogle Scholar
  26. 26.
    Fröhlich O, Schreier P (1990) Volatile Constituents of Loquat (Eriobotrya japonica Lindl.) Fruit. J Food Sci 55(1):176–180.  https://doi.org/10.1111/j.1365-2621.1990.tb06046.x CrossRefGoogle Scholar
  27. 27.
    de Oliveira ALL, da Silva DB, Turatti ICC, Yokoya NS, Debonsi HM (2009) Volatile constituents of Brazilian Bostrychia species (Rhodomelaceae) from mangrove and rocky shore. Biochem Syst Ecol 37:761–765.  https://doi.org/10.1016/j.bse.2009.11.004 CrossRefGoogle Scholar
  28. 28.
    Adams RP (1995) Identification of Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publ. Corp., Carol StreamGoogle Scholar
  29. 29.
    Dembitskiĭ VM, Dor I, Shkrob I, Aki M (2001) Branched Alkanes and Other Apolar Compounds Produced by the Cyanobacterium Microcoleus vaginatus from the Negev Desert. Russ J Bioorganic Chem 27:130–140.  https://doi.org/10.1023/A:1011385220331 CrossRefGoogle Scholar
  30. 30.
    Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17:462–471.  https://doi.org/10.1016/j.cbpa.2013.03.037 CrossRefGoogle Scholar
  31. 31.
    Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56.  https://doi.org/10.1016/j.jbiotec.2012.03.005 CrossRefGoogle Scholar
  32. 32.
    Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:  https://doi.org/10.3389/fmicb.2017.00515
  33. 33.
    Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Steen TS, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381.  https://doi.org/10.1016/j.tibtech.2008.03.008 CrossRefGoogle Scholar
  34. 34.
    E4tech, Re-CORD and WUR (UK) Ltd (2015) From the Sugar Platform to biofuels and biochemical, Report ENER/C2/423–2012/ SI2.673791, European Commission Directorate-General EnergyGoogle Scholar
  35. 35.
    Zhai C, Song S, Zou S, Liu C, Xue Y (2013) The mechanism of competition between two bloom-forming Microcystis species. Freshw Biol 58:1831–1839.  https://doi.org/10.1111/fwb.12172 CrossRefGoogle Scholar
  36. 36.
    Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:9: 1111–1122.  https://doi.org/10.1016/j.biomag.2014.01.009 CrossRefGoogle Scholar
  37. 37.
    Rangel-Sánchez G, Castro-Mercado E, García-Pineda E (2014) Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. J Plant Physiol 2014:189–198.  https://doi.org/10.1016/j.jplph.2013.07.004 CrossRefGoogle Scholar
  38. 38.
    Oliver NJ, Rabinovitch-Deere CA, Carroll AL et al (2016) Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol 35:43–50.  https://doi.org/10.1016/j.cbpa.2016.08.023 CrossRefGoogle Scholar
  39. 39.
    Islam MT, de Alencar MVOB, Machado KC, Machado KC, Melo-Cavalcante AAC, Sousa DP, de Freitas RM (2015) Phytol in a pharma-medico-stance. Chem Biol Interact 240:60–73.  https://doi.org/10.1016/j.cbi.2015.07.010 CrossRefGoogle Scholar
  40. 40.
    Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22.  https://doi.org/10.1016/j.plantsci.2011.07.018 CrossRefGoogle Scholar
  41. 41.
    Knoot CJ, Ungerer JL, Wangikar PP, Pakrasi HB (2017) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem.  https://doi.org/10.1074/jbc.R117.815886 Google Scholar
  42. 42.
    Costa JP, De Oliveira GA, de Almeida AA, Islam MT, De Sousa DP, de Freitas RM (2014) Anxiolytic-like effects of phytol: possible involvement of GABAergic transmission. Brain Res 1547:34–42.  https://doi.org/10.1016/j.brainres.2013.12.003 CrossRefGoogle Scholar
  43. 43.
    de Felício R, de Albuquerque S, Young MCM et al (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769.  https://doi.org/10.1016/j.jpba.2010.02.018 CrossRefGoogle Scholar
  44. 44.
    vom Dorp K, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber APM, Dörmann P (2015) Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of arabidopsis. Plant Cell 27(10):2836–2859.  https://doi.org/10.1105/tpc.15.00395 Google Scholar
  45. 45.
    de Moraes J, de Oliveira RN, Costa JP, Junior ALG, de Sousa DP, Freitas RM, Pinto PLS (2014) Phytol, a Diterpene Alcohol from Chlorophyll, as a Drug against Neglected Tropical Disease Schistosomiasis mansoni. PLoS Negl Trop Dis 8(1):51.  https://doi.org/10.1371/journal.pntd.0002617 CrossRefGoogle Scholar
  46. 46.
    Zeinalian R, Farhangi MA, Shariat A, Saghafi-Asl M (2017) The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complement Altern Med 17(1):225.  https://doi.org/10.1186/s12906-017-1670-y CrossRefGoogle Scholar
  47. 47.
    Abdel-Hafez SII, Abo-Elyousr KAM, Abdel-Rahim IR (2015) Fungicidal activity of extracellular products of cyanobacteria against Alternaria porri. Eur J Phycol 50:239–245.  https://doi.org/10.1080/09670262.2015.1028105 CrossRefGoogle Scholar
  48. 48.
    Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phyther Res 18:754–757.  https://doi.org/10.1002/ptr.1541 CrossRefGoogle Scholar
  49. 49.
    Pejin B, Savic A, Sokovic M, Glamoclija J, Ciric A, Nikolic M, Radotic K, Mojovic M (2014) Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat Prod Res 28:6:372–376.  https://doi.org/10.1080/14786419.2013.869692 CrossRefGoogle Scholar
  50. 50.
    Inoue Y, Hada T, Shiraishi A, Hirose K, Hamashima H, Kobayashi S (2005) Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrob Agents Chemother 49:1770–1774.  https://doi.org/10.1128/AAC.49.5.1770-1774.2005 CrossRefGoogle Scholar
  51. 51.
    Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103.  https://doi.org/10.1016/j.tibtech.2010.12.003 CrossRefGoogle Scholar
  52. 52.
    Lea-Smith DJ, Howe CJ (2017) The use of cyanobacteria for biofuel production. In: Love J, Bryant JA. Biofuels, Bioenergy, Wiley, Chichester.  https://doi.org/10.1002/9781118350553.ch9 CrossRefGoogle Scholar
  53. 53.
    Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapadi S, Navarro P, Croos F, Roberts JM (2013) Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS ONE.  https://doi.org/10.1371/journal.pone.0058307 Google Scholar
  54. 54.
    Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)-Prospects and challenges. Algal Res 2:79–97.  https://doi.org/10.1016/j.algal.2013.01.006 CrossRefGoogle Scholar
  55. 55.
    Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Sepulveda BMP, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112(44):13591–13596.  https://doi.org/10.1073/pnas.1507274112 CrossRefGoogle Scholar
  56. 56.
    Milovanović I, Mišan A, Simeunović J, Kovaĉ D, Jambrec D, Mandić A (2015) Determination of volatile organic compounds in selected strains of cyanobacteria. J Chem.  https://doi.org/10.1155/2015/969542 Google Scholar
  57. 57.
    Tellez MR, Schrader KK, Kobaisy M (2001) Volatile components of the cyanobacterium Oscillatoria perornata (Skuja). J Agric Food Chem 49:5989–5992.  https://doi.org/10.1021/jf010722p CrossRefGoogle Scholar
  58. 58.
    Santos AB, Fernandes AS, Wagner R, Jacob-Lopes E, Zepka LQ (2016) Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. J Appl Phycol 28:1561–1570.  https://doi.org/10.1007/s10811-015-0740-0 CrossRefGoogle Scholar
  59. 59.
    Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49(5):1227–1239.  https://doi.org/10.1016/S0031-9422(97)00943-6 CrossRefGoogle Scholar
  60. 60.
    Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F (2011) Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry. J Chromatogr A 1218:8289–8293.  https://doi.org/10.1016/j.chroma.2011.09.043 CrossRefGoogle Scholar
  61. 61.
    Ríos V, Prieto AI, Cameán AM, Gonz (2014) Detection of cylindrospermopsin toxin markers in cyanobacterial algal blooms using analytical pyrolysis (Py-GC/MS) and thermally-assisted hydrolysis and methylation (TCh-GC/MS). Chemosphere 108:175–182.  https://doi.org/10.1016/j.chemosphere.2014.01.033 CrossRefGoogle Scholar
  62. 62.
    Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833.  https://doi.org/10.1016/j.chembiol.2004.03.030 CrossRefGoogle Scholar
  63. 63.
    Zhu X, Su M, Manickam K, Zhang W (2015) Bacterial Genome mining of enzymatic tools for alkyne biosynthesis. ACS Chem Biol 10:2785–2793.  https://doi.org/10.1021/acschembio.5b00641 CrossRefGoogle Scholar
  64. 64.
    Caires TA, Sant’anna CL, Nunes JMC (2013) A new species of marine benthic cyanobacteria from the infra littoral of Brazil: Symploca infralitotalis sp. nov. Braz J Bot 36(2):159–163.  https://doi.org/10.1007/s40415-013-0017-2 CrossRefGoogle Scholar
  65. 65.
    Genuário DB, Vieira Vaz MGM, Hentschke GS, Sant’Anna CL, Fiore MF (2015) Halotia gen. Nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 65:633–675.  https://doi.org/10.1099/ijs.0.070078-0 CrossRefGoogle Scholar
  66. 66.
    Silva-Stenico ME, Kaneno R, Zambuzi FA, Vaz MGMV, Alvarenga DO, Fiore MF (2013) Natural products from cyanobacteria with antimicrobial and antitumor activity. Curr Pharm Biotechnol 14:820–828.  https://doi.org/10.2174/1389201014666131227114846 CrossRefGoogle Scholar
  67. 67.
    Da Rós PCM, Silva CSP, Silva-Estenico ME, Fiore MF, De Castro HF (2013) Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production. Marine Drugs 11:2365–2381.  https://doi.org/10.3390/md11072365 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lorene Armstrong
    • 1
    • 5
  • Marcelo Gomes Marçal Vieira Vaz
    • 2
    • 3
  • Diego Bonaldo Genuário
    • 2
    • 4
  • Marli Fátima Fiore
    • 2
  • Hosana Maria Debonsi
    • 1
    • 6
    Email author
  1. 1.Physics and Chemistry Department, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of CyanobacteriaUniversity of São PauloPiracicabaBrazil
  3. 3.Department of Plant Biology, Laboratory of Phycology and Molecular BiologyUniversity of ViçosaViçosaBrazil
  4. 4.Laboratory of Environmental MicrobiologyEMBRAPA EnvironmentJaguariúnaBrazil
  5. 5.Department of Pharmaceutical SciencesState University of Ponta GrossaPonta GrossaBrazil
  6. 6.Faculdade de Ciências Farmacêuticas de Ribeirão Preto (USP)Ribeirão PretoBrazil

Personalised recommendations