Current Microbiology

, Volume 76, Issue 5, pp 552–557 | Cite as

Insights into the Draft Genome Sequence of the Kiwifruit-Associated Pathogenic Isolate Pseudomonas fluorescens AHK-1

  • Lixin Zhang
  • Zhiran Wu
  • Xia Wang
  • Genjia Tan
  • Jianghua SongEmail author


Pseudomonas fluorescens is a physiologically diverse species of bacteria present in many habitats, which possesses multifunctional traits that provide it with the capability to exhibit biological control activities, promote plant health or cause plant disease. Here, we present the draft genome sequence of the kiwifruit-associated pathogenic isolate AHK-1 of P. fluorescens, which was isolated from the diseased leaves of kiwifruit plants. The genome size of AHK-1 was found to be 7,035,786 bp, with a G + C content of 60.88%. It is predicted to contain a total of 6327 genes, of which 3998 were homologous to genes in the other two sequenced P. fluorescens isolates (SBW25 and GcM5-1A) and 946 were unique to AHK-1 based on comparative genomic analysis. Furthermore, we identified several candidate virulence factors in the genome of AHK-1, including the fliA gene encoding flagellar biosynthetic protein for biosynthesis, and the genes for components of type VI, III, and IV secretion systems. This genomic resource will serve as a reference for better understanding the genetics of pathogenic and non-pathogenic strains, and will help to elucidate the pathogenic mechanisms of P. fluorescens associated with plant disease.



This work was supported by the Natural Science Foundation of Anhui Province (1608085MC56), the Key Project of Science and Technology in Anhui Province (18030701211), the National Natural Science Foundation of China (31872108), the Hefei Special Project of Science and Technology Development (ZR201711290010), the Anhui Province Program of Academic/Technology Research leader (2017H137), and the Postgraduate Innovation Fund of Anhui Agricultural University.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

284_2019_1655_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1221 KB)
284_2019_1655_MOESM2_ESM.xls (49 kb)
Supplementary material 2 (XLS 49 KB)


  1. 1.
    Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8(7):e1002784CrossRefGoogle Scholar
  2. 2.
    Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB (2014) Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 27(4):927–948CrossRefGoogle Scholar
  3. 3.
    Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ, Chang JH (2010) An improved, high-quality draft genome sequence of the germination-arrest factor-producing Pseudomonas fluorescens WH6. BMC Genom 11:522CrossRefGoogle Scholar
  4. 4.
    Li B, Wang GL, Wu ZY, Qiu W, Tang QM, Xie GL (2009) First report of bacterial head rot of broccoli caused by Pseudomonas fluorescens in China. Plant Dis 93(11):1219–1219CrossRefGoogle Scholar
  5. 5.
    Aiello D, Vitale A, La Ruota AD, Polizzi G, Cirvilleri G (2017) Synergistic interactions between Pseudomonas spp. and Xanthomonas perforans in enhancing tomato pith necrosis symptoms. J Plant Pathol 99(3):731–740Google Scholar
  6. 6.
    Feng K, Li RG, Chen YN, Zhao BG, Yin TM (2015) Sequencing and analysis of the Pseudomonas fluorescens GcM5-1A genome: a pathogen living in the surface coat of Bursaphelenchus xylophilus. PLoS ONE 10(10):e0141515CrossRefGoogle Scholar
  7. 7.
    Zhang LX, Li SS, He T, Tan GJ (2014) Identification and pathogenicity of Pseudomonas fluorescens associated with canker disease of kiwifruit in central China. J Hortic Sci Biotech 89(2):130–135CrossRefGoogle Scholar
  8. 8.
    Renzi M, Copini P, Taddei AR, Rossetti A, Gallipoli L, Mazzaglia A, Balestra GM (2012) Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102(9):827–840CrossRefGoogle Scholar
  9. 9.
    Froud KJ, Beresford RM, Cogger NC (2018) Impact of kiwifruit bacterial canker on productivity of cv. Hayward kiwifruit using observational data and multivariable analysis. Plant Pathol 67(3):671–681CrossRefGoogle Scholar
  10. 10.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefGoogle Scholar
  11. 11.
    Xu XL, Cheng TY, Yang H, Yan F, Yang Y (2015) De novo sequencing, assembly and analysis of salivary gland transcriptome of Haemaphysalis flava and identification of sialoprotein genes. Infect Genet Evol 32:135–142CrossRefGoogle Scholar
  12. 12.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  13. 13.
    Delcher AL, Salzberg SL, Phillippy AM (2003) Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinform Google Scholar
  14. 14.
    Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069CrossRefGoogle Scholar
  15. 15.
    Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48CrossRefGoogle Scholar
  16. 16.
    Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676CrossRefGoogle Scholar
  17. 17.
    Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185CrossRefGoogle Scholar
  18. 18.
    Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57CrossRefGoogle Scholar
  19. 19.
    Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108CrossRefGoogle Scholar
  20. 20.
    Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10):1335–1337CrossRefGoogle Scholar
  21. 21.
    Guo DS, Zhao BG, Li RG, Kulinich OA, Ryss A (2008) Purification of flagellin of Pseudomonas fluorescens GcM5-1A carried by the pine wood nematode, Bursaphelenchus xylophilus, and its in vitro toxicity to a suspension of cells of Pinus thunbergii. Russ J Nematol 16(2):151–157Google Scholar
  22. 22.
    Shinya R, Morisaka H, Takeuchi Y, Ueda M, Futai K (2010) Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach. Phytopathology 100(12):1289–1297CrossRefGoogle Scholar
  23. 23.
    Trippe K, McPhail K, Armstrong D, Azevedo M, Banowetz G (2013) Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties. BMC Microbiol 13:111CrossRefGoogle Scholar
  24. 24.
    Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12(1):35CrossRefGoogle Scholar
  25. 25.
    Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA et al (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51CrossRefGoogle Scholar
  26. 26.
    Chen LH, Zheng DD, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res 44(D1):D694–D697CrossRefGoogle Scholar
  27. 27.
    Tsou AM, Frey EM, Hsiao A, Liu Z, Zhu J (2008) Coordinated regulation of virulence by quorum sensing and motility pathways during the initial stages of Vibrio cholerae infection. Commun Integr Biol 1(1):42–44CrossRefGoogle Scholar
  28. 28.
    Aubry A, Hussack G, Chen W, KuoLee R, Twine SM, Fulton KM, Foote S, Carrillo CD, Tanha J, Logan SM (2012) Modulation of toxin production by the flagellar regulon in clostridium difficile. Infect Immun 80(10):3521–3532CrossRefGoogle Scholar
  29. 29.
    Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, van Dijk K, Collmer A (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA 97(9):4856–4861CrossRefGoogle Scholar
  30. 30.
    Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41(5):999–1014CrossRefGoogle Scholar
  31. 31.
    Broms JE, Ishikawa T, Wai SN, Sjostedt A (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol 13(1):96–96CrossRefGoogle Scholar
  32. 32.
    Sun K, Broms J, Lavander M, Gurram BK, Enquist PA, Andersson CD, Elofsson M, Sjostedt A (2014) Screening for inhibition of Vibrio cholerae VipA-VipB interaction identifies small-molecular compounds active against type VI secretion. Antimicrob Agents Ch 58(7):4123–4130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
  2. 2.College of HorticultureAnhui Agricultural UniversityHefeiChina

Personalised recommendations