Current Microbiology

, Volume 76, Issue 5, pp 545–551 | Cite as

Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum

  • Chang Chen
  • Jia He
  • Wenyan Gao
  • Yanmin WeiEmail author
  • Gang LiuEmail author


Autophagy is a highly conserved mechanism to overcome various stresses and recycle cytoplasmic components and organelles. Ubiquitin-like (UBL) protein Atg12 is a key protein involved in autophagosome formation through stimulation of Atg8 conjugation to phosphatidylethanolamine. Here, we describe the identification of the autophagy-related gene Acatg12, encoding an Atg12 homologous protein in the cephalosporin C producing fungus Acremonium chrysogenum. Disruption of Acatg12 impaired the delivery and degradation of eGFP-Atg8, indicating that the autophagic process was blocked. Meanwhile, conidiation was dramatically reduced in the Acatg12 disruption mutant (∆Acatg12). In contrast, cephalosporin C production was increased twofold in ∆Acatg12, but fungal growth was reduced after 6 days fermentation. Consistent with these results, the transcriptional level of the cephalosporin biosynthetic genes was increased in ∆Acatg12. The results extend our understanding of autophagy in filamentous fungi.



We are grateful to Prof. Juan F. Martín (Universidad de León, Spain) for providing the plasmid pJL43-RNAi. We thank Prof. Seogchan Kang (Penn State University, USA) and Prof. Xingzhong Liu (Institute of Microbiology, CAS) for providing plasmid pAg1-H3. This work was supported by grants from the National Natural Science Foundation of China (31670091) and Construction of the Registry and Database of Bioparts for Synthetic Biology of the Chinese Academy of Sciences (ZSYS-016).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2019_1650_MOESM1_ESM.docx (814 kb)
Supplementary material 1 (DOCX 813 KB)


  1. 1.
    Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 2(12 Suppl):1542–1552. CrossRefGoogle Scholar
  2. 2.
    Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. CrossRefGoogle Scholar
  3. 3.
    Shpilka T, Welter E, Borovsky N, Amar N, Shimron F, Peleg Y, Elazar Z (2015) Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci USA 112(5):1434–1439. CrossRefGoogle Scholar
  4. 4.
    Nakatogawa H (2013) Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem 55:39–50. CrossRefGoogle Scholar
  5. 5.
    Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398. CrossRefGoogle Scholar
  6. 6.
    Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10(5):1367–1379CrossRefGoogle Scholar
  7. 7.
    Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52):37298–37302. CrossRefGoogle Scholar
  8. 8.
    Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277(21):18619–18625. CrossRefGoogle Scholar
  9. 9.
    Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981. CrossRefGoogle Scholar
  10. 10.
    Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31(2):287–311. CrossRefGoogle Scholar
  11. 11.
    Martin JF, Ullan RV, Garcia-Estrada C (2010) Regulation and compartmentalization of beta-lactam biosynthesis. Microb Biotechnol 3(3):285–299. CrossRefGoogle Scholar
  12. 12.
    Evers ME, Trip H, van den Berg MA, Bovenberg RAL, Driessen AJM (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–135. Google Scholar
  13. 13.
    Schmitt EK, Hoff B, Kück U (2004) Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol 88:1–43. Google Scholar
  14. 14.
    Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77(4):1413–1422. CrossRefGoogle Scholar
  15. 15.
    Wang H, Pan Y, Hu P, Zhu Y, Li J, Jiang X, Liu G (2014) The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol 69:65–74. CrossRefGoogle Scholar
  16. 16.
    Liu J, Hao T, Hu P, Pan Y, Jiang X, Liu G (2017) Functional analysis of the selective autophagy related gene Acatg11 in Acremonium chrysogenum. Fungal Genet Biol 107:67–76. CrossRefGoogle Scholar
  17. 17.
    Long LK, Yang J, An Y, Liu G (2012) Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet Biol 49(2):114–122. CrossRefGoogle Scholar
  18. 18.
    Khang CH, Park S-Y, Rho H-S, Lee Y-H, Kang S (2006) Filamentous fungi (Magnaporthe grisea and Fusarium oxysporum). Methods Mol Biol 344:403–420. Google Scholar
  19. 19.
    Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD (2015) Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27(5):1389–1408. CrossRefGoogle Scholar
  20. 20.
    Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata N, Kuchitsu K (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10(5):878–888. CrossRefGoogle Scholar
  21. 21.
    Mukaiyama H, Kajiwara S, Hosomi A, Giga-Hama Y, Tanaka N, Nakamura T, Takegawa K (2009) Autophagy-deficient Schizosaccharomyces pombe mutants undergo partial sporulation during nitrogen starvation. Microbiology 155:3816–3826. CrossRefGoogle Scholar
  22. 22.
    Liu J, Gao W, Pan Y, Liu G (2018) Metabolic engineering of Acremonium chrysogenum for improving cephalosporin C production independent of methionine stimulation. Microb Cell Fact 17(1):87. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Department of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
  3. 3.The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations