Advertisement

Genome Analysis of Carbaryl-Degrading Strain Pseudomonas putida XWY-1

  • Shijun Zhu
  • Hui Wang
  • Wankui Jiang
  • Zhangong Yang
  • Yidong Zhou
  • Jian He
  • Jiguo QiuEmail author
  • Qing Hong
Review Article
  • 37 Downloads

Abstract

Carbaryl was a widely used pesticide in the agriculture industry. The toxicity against non-target organisms and the environmental pollution it caused became the focus of public concern. However, the microbial mechanism of carbaryl degradation was not fully investigated. In the study, we reported the complete genome of the carbaryl-degrading Pseudomonas putida strain XWY-1, which consists of a chromosome (5.9 Mbp) and a plasmid (0.4 Mbp). The carbaryl degradation genes are located on the plasmid. The study on the genome will facilitate to further elucidate the carbaryl degradation and advance the potential biotechnological applications of P. putida strain XWY-1.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31670112, 31870092) and the National Key R&D Program of China (2017YFD0800702).

Supplementary material

284_2019_1637_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2062 KB)

References

  1. 1.
    Zylstra G, McCombie W, Gibson D, Finette B (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54(6):1498–1503Google Scholar
  2. 2.
    Abuhamed T, Bayraktar E, Mehmetoğlu T, Mehmetoğlu Ü (2004) Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem 39(8):983–988CrossRefGoogle Scholar
  3. 3.
    Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1, 2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6. Appl Environ Microbiol 71(10):5951–5956CrossRefGoogle Scholar
  4. 4.
    Hayatsu M, Tago K, Fukui M, Sekiya E (2005) Ecology of pesticide-degrading bacteria: degradation of organophosphorus and carbamate insecticides. ACS Publications, pp 82–91Google Scholar
  5. 5.
    Zhu S, Qiu J, Wang H, Wang X, Jin W, Zhang Y, Zhang C, Hu G, He J, Hong Q (2018) Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. J Hazard Mater 344:1126–1135CrossRefGoogle Scholar
  6. 6.
    Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C (2015) Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 43(6):e37–e37CrossRefGoogle Scholar
  7. 7.
    Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinform 13(5):278–289CrossRefGoogle Scholar
  8. 8.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75CrossRefGoogle Scholar
  9. 9.
    Cros M-J, De Monte A, Mariette J, Bardou P, Grenier-Boley B, Gautheret D, Touzet H, Gaspin C (2011) RNAspace.org: an integrated environment for the prediction, annotation, and analysis of ncRNA. RNA 17(11):1947–1956CrossRefGoogle Scholar
  10. 10.
    Trivedi VD, Jangir PK, Sharma R, Phale PS (2016) Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp. Sci Rep 6:38430CrossRefGoogle Scholar
  11. 11.
    Singh R, Trivedi VD, Phale PS (2013) Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6. Arch Microbiol 195(8):521–535CrossRefGoogle Scholar
  12. 12.
    Trivedi VD, Jangir PK, Sharma R (2016) Draft genome sequence of carbaryl-degrading soil isolate Pseudomonas sp. strain C5pp. Genome Announc 4(3):e00526–e00516CrossRefGoogle Scholar
  13. 13.
    Fernández M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E (2012) Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol 78(15):5104–5110CrossRefGoogle Scholar
  14. 14.
    Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shijun Zhu
    • 1
  • Hui Wang
    • 1
  • Wankui Jiang
    • 1
  • Zhangong Yang
    • 1
  • Yidong Zhou
    • 1
  • Jian He
    • 1
    • 2
  • Jiguo Qiu
    • 1
    Email author
  • Qing Hong
    • 1
  1. 1.Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Laboratory Center of Life Sciences, College of Life SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations