Ruminal Microbial Populations and Fermentation Characteristics in Beef Cattle Grazing Tropical Forage in Dry Season and Supplemented with Different Protein Levels

  • Renata Pereira da Silva-MarquesEmail author
  • Joanis Tilemahos Zervoudakis
  • Luciano Nakazato
  • Luciana Keiko Hatamoto-Zervoudakis
  • Luciano da Silva Cabral
  • Núbia Bezerra do Nascimento Matos
  • Maria Isabel Leite da Silva
  • Andresa Lazzarotto Feliciano


We tested the hypothesis that supplementation with protein improves fermentation parameters without damaging the rumen microbial populations of beef cattle grazing Urochloa brizantha cv. Marandu during the dry season. Four rumen-cannulated Nellore bulls (571 ± 31 kg of body weight) were used in a 4 × 4 Latin square design. The treatments were not supplemented with concentrate (only free-choice mineral salt ad libitum) and supplemented (supplements with low-LPSU, medium-MPS, and high protein supplement—HPS), supplying 155, 515, and 875 g/animal/day of crude protein (CP), respectively. The abundance of each target taxon was calculated as a fraction of the total 16S rRNA gene copies in the samples, using taxon-specific and domain bacteria primers. There was no difference (P > 0.05) across treatments for intakes of dry matter (DM), forage and neutral detergent fiber (NDF), digestibility of DM and NDF, and ruminal pH. Animals supplemented with concentrate had greater (P < 0.05) intakes and digestibility of CP, ether extract and non-fibrous carbohydrate contents of the substrates (EE + NFC), and ruminal ammonia nitrogen (RAN) compared to control. Bulls that received only mineral salt had lower proportions of Butyrivibrio fibrisolvens and had greater (P < 0.05) proportions of Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, Methanogen archaea than bulls supplemented with concentrate. The MPS animals had greater (P < 0.05) intake and digestibility of CP, RAN concentration, and had lower (P < 0.05) proportions of Fibrobacter succinogenes, Ruminococcus flavefaciens, and Selenomonas ruminantium than LPSU animals. The HPS provided higher (P < 0.05) intake of CP, RAN and proportion of Ruminococcus albus when compared with MPS. In conclusion, supply of 515 g/animal/day of protein via supplement provides better ruminal conditions for the growth of cellulolytic bacteria of bulls on pasture during dry season.



We thank the National Council of Scientific and Technological Development for funding this research project.

Compliance with Ethical Standards


There are no conflicts of interest in this research.


  1. 1.
    Detmann E, Paulino MF, Mantovani HC, Valadares Filho SC, Sampaio CB, Souza MA, Lazzarini I, Detmann KSC (2009) Parameterization of ruminal fibre degradationin low-quality tropical forage using Michaelis-Menten kinetics. Livest Sci 126:136–146CrossRefGoogle Scholar
  2. 2.
    Leng RA (1990) Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutr Res Rev 3:277–303CrossRefGoogle Scholar
  3. 3.
    Silva-Marques RP, Zervoudakis JT, Hatamoto-Zervoudakis LK, Cabral LS, Alexandrino E, José Neto A, Soares JQ, Melo ACB (2015) Suplementos múltiplos para novilhas de corte a pasto no período seco: características nutricionais. Semina 36:509–524Google Scholar
  4. 4.
    Reis RA, Melo GMP, Bertigaglia LMA, Oliveira AP, Balsalobre MAA (2005) Suplementação de animais em pastagens: quantificação e custos. In: Simpósio sobre manejo da pastagem, 22, vol 1. Piracicaba: Fundação de Estudos Agrários Luiz de Queiroz. pp 279–352Google Scholar
  5. 5.
    Valadares Filho SC, Marcondes MI, Chizzotti ML, Paulino PVR (2010) Nutrient requirements of zebu beef cattle BR-CORTE, 2nd edn. UFV-Departamento de Zootecnia,ViçosaGoogle Scholar
  6. 6.
    Barthram GT (1985) Experimental techniques: The HFRO sward stick. In: The hill farming research organization biennial report 1984/1985. Hill Farming Research Organization, Penicuik, pp 29–30Google Scholar
  7. 7.
    Johnson AD (1978) Sample preparation and chemical analysis of vegetation. In: Manetje L (ed) Measurement of grassland vegetation and animal production. Commonwealth Agricultural Bureaux, Aberystwyth, pp 96–102Google Scholar
  8. 8.
    Smith AM, Reid JT (1955) Use of chromic oxide as an indicator of faecal output for the purpose of determining the intake of a pasture herbage by grazing cows. J Dairy Sci 38:515–524CrossRefGoogle Scholar
  9. 9.
    Fenner H (1965) Methods for determining total volatile bases in rumen fluid by steam distillation. J Dairy Sci 48:249–251CrossRefGoogle Scholar
  10. 10.
    Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174CrossRefGoogle Scholar
  11. 11.
    Ohene-Adjei S, Chaves AV, McAllister TA, Benchaar C, Teather RM, Forster RJ (2008) Evidence of increased diversity of Methanogenic archaea with plant extract supplementation. Microbial Ecology 56:234–242CrossRefGoogle Scholar
  12. 12.
    Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apismellifera. Appl Environ Microbiol 80:7378–7387CrossRefGoogle Scholar
  13. 13.
    Yu Z, Michel F Jr, Hansen G, Wittum T, Morrison M (2005) Development and application of real-time pcr assays for quantification of genes encoding tetracycline resistance. Appl Environ Microbiol 71(11):6926–6933CrossRefGoogle Scholar
  14. 14.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  15. 15.
    Association of Official Analytical Chemistry (AOAC) (1990) Official methods of analysis, 15th edn. AOAC International, ArlingtonGoogle Scholar
  16. 16.
    Mertens DR (2002) Gravimetric determination of amylase treated neutral detergent fibre in feeds with refluxing in beakers or crucibles: Collaborative study. J AOAC Int 85:1212–1240Google Scholar
  17. 17.
    Licitra G, Hernandez TM, Van Soest PJ (1996) Standardisation of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Technol 57:347–358CrossRefGoogle Scholar
  18. 18.
    Valente TNP, Detmann E, Valadares Filho SC, Cunha M, Queiroz AC, Sampaio CB (2011) In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Rev Bras Zootec 40:666–675CrossRefGoogle Scholar
  19. 19.
    Hall MB (2015) Comparisons of in vitro fermentation and high moisture forage processing methods for determination of neutral detergent fiber digestibility. Anim Feed Sci Technol 199:127–136CrossRefGoogle Scholar
  20. 20.
    Holleman DF, White RG (1989) Determination of digesta fill and passage rate from non-absorbed particulate phase markers using the single dose method. Can J Zool 67:488–494CrossRefGoogle Scholar
  21. 21.
    Detmann E, Paulino MF, Zervoudakis JT, Valadares Filho SC, Euclydes FF, Lana RP, Queiros DS (2001) Cromo e indicadores internos na estimação do consumo de novilhos mestiços, suplementados, a pasto. Rev Bras Zootec 30:1600–1609CrossRefGoogle Scholar
  22. 22.
    Lazzarini I, Detmann E, Valadares Filho SC, Paulino MF, Batista ED, Rufino LM, Reis WLS, Franco MO (2016) Nutritional performance of cattle grazing during rainy season with nitrogen and starch supplementation. Asian Australas J Anim Sci 29:1120–1128CrossRefGoogle Scholar
  23. 23.
    De Paula NF, Paulino MF, Couto VRM, Detmann E, Maciel IFS, Valente ÉEL, Barros LV, Mendes RKV (2014) Suplemento de baixo consumo para vacas de corte não-gestantes, vol 35. Ciências Agrárias, Semina, pp 1999–2010Google Scholar
  24. 24.
    Valadares RFD, Broderick GA, Valadares Filho SC, Clayton MK (1999) Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J Dairy Sci 82:2686–2696CrossRefGoogle Scholar
  25. 25.
    Orskov ER (1982) Protein nutrition in ruminants. Academic Press, London, 160pGoogle Scholar
  26. 26.
    Martínez-Pérez MF, Calderón-Mendoza D, Islas A, Encinias AM, Loya-Olguín F, Soto-Navarro SA (2013) Effect of corn dry distiller grains plus solubles supplementation level on performance and digestion characteristics of steers grazing native range during forage growing season. J Anim Sci 91:1350–1361CrossRefGoogle Scholar
  27. 27.
    Rufino LMA, Detmann E, Gomes DI, Reis WLS, Batista ED, Valadares Filho SC, Paulino MF (2016) Intake, digestibility and nitrogen utilization in cattle fed tropical forage and supplemented with protein in the rumen, abomasum, or both. J Anim Sci Biotechnol 7:11CrossRefGoogle Scholar
  28. 28.
    Russell JB, Sniffen CJ, Van Soest PJ (1983) Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J Dairy Sci 66:763CrossRefGoogle Scholar
  29. 29.
    Detmann E, Paulino MF, Valadares Filho SC (2010) Otimização do uso de recursos forrageiros basais. In: Proceedings of 3rd international symposium on beef cattle production. Universidade Federal de Viçosa, Viçosa, pp 191–240Google Scholar
  30. 30.
    Dehority BA (2003) Rumen microbiology. Nottingham University Press, NottinghamGoogle Scholar
  31. 31.
    Russell JB (2002) Rúmen microbiology and its role in ruminant nutrition. Cornell University Press, New YorkGoogle Scholar
  32. 32.
    Nolan JV (1993) Nitrogen Kinetics. In: Forbes JM, France J (eds) Quantitative aspects of ruminant digestion and metabolism. Cambridge University, Wallingford, pp 123–144Google Scholar
  33. 33.
    Bryant MP, Robinson IM (1962) Some nutritional characteristics of predominant culturable ruminal bacteria. J Bacteriol 84:605–614Google Scholar
  34. 34.
    Allison MJ (1969) Biosynthesis of amino acids by ruminal microorganisms. J Anim Sci 29:797–807CrossRefGoogle Scholar
  35. 35.
    Feng YL (2004) Ruminant animal nutrition. Science Press, BeijingGoogle Scholar
  36. 36.
    Cotta MA, Hespell RB (1986) Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl Environ Microbiol 52:51–58Google Scholar
  37. 37.
    Albers SV, Konings WN, Driessen JM. (2007) Solute transport. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 354–368CrossRefGoogle Scholar
  38. 38.
    Ferry JG, Kastead KA (2007) Methanogenesis. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 288–314CrossRefGoogle Scholar
  39. 39.
    Lange M, Westermann P, Ahring BK (2005) Archaea in protozoa and metazoan. Appl Microbiol Biotechnol 66:465–474CrossRefGoogle Scholar
  40. 40.
    Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The Rumen microbial ecosystem. Elsevier Applied Science, London, pp. 21–75Google Scholar
  41. 41.
    Finlay BJ, Esteban D, Clarke KJ, Williamns AG, Embley TM, Hirt RP (1994) Some rúmen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–161CrossRefGoogle Scholar
  42. 42.
    Jarvis GN, Strompl C, Burgess DM, Skillman LC, Moore ER, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332CrossRefGoogle Scholar
  43. 43.
    Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hall, New York, pp 128–206CrossRefGoogle Scholar
  44. 44.
    Wright A-DG, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73:4206–4210CrossRefGoogle Scholar
  45. 45.
    Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75:6524–6533CrossRefGoogle Scholar
  46. 46.
    Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76:3776–3786CrossRefGoogle Scholar
  47. 47.
    Michalet-Doreau B, Fernandez I, Peyron C, Millet L, Fonty G (2001) Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod Nutr Dev 41:187–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Renata Pereira da Silva-Marques
    • 1
    Email author
  • Joanis Tilemahos Zervoudakis
    • 2
  • Luciano Nakazato
    • 3
  • Luciana Keiko Hatamoto-Zervoudakis
    • 2
  • Luciano da Silva Cabral
    • 2
  • Núbia Bezerra do Nascimento Matos
    • 4
  • Maria Isabel Leite da Silva
    • 1
  • Andresa Lazzarotto Feliciano
    • 4
  1. 1.Universidade Federal de Mato Grosso - UFMTCuiabáBrazil
  2. 2.Graduate Program in Animal ScienceUniversidade Federal de Mato Grosso - UFMTCuiabáBrazil
  3. 3.Graduate Program in Veterinary ScienceUniversidade Federal de Mato Grosso - UFMTCuiabáBrazil
  4. 4.Universidade Federal de Mato Grosso - UFMTCuiabáBrazil

Personalised recommendations