Advertisement

Biofilm Formation by Avian Pathogenic Escherichia coli is Not Related to In Vivo Pathogenicity

  • Suelle V. Rodrigues
  • Vanessa Laviniki
  • Karen A. Borges
  • Thales Q. Furian
  • Hamilton L. S. Moraes
  • Vladimir P. Nascimento
  • Carlos T. P. Salle
Article
  • 62 Downloads

Abstract

Avian pathogenic Escherichia coli (APEC) is one of the pathogens that most concerns the poultry industry worldwide due to the economic losses it can cause. APEC persistence and survival, both in the environment and in the host, may be a consequence of biofilm-producing capabilities. The aim of this study was to evaluate APEC strains’ biofilm production and its relationship to in vivo pathogenicity. Two hundred thirty-eight APEC isolates from three different origins (broiler bedding material, cellulite lesions, and respiratory diseases) were selected. The in vivo pathogenicity index (PI) was determined. Biofilm formation was evaluated using a microplate assay with analysis of colony morphology in Congo Red agar in order to detect the phenotypic expression of curli fimbriae and cellulose. Regarding biofilm production, it was observed that 55.8% of the strains produced biofilms. In the morphological test, 88.2% of the isolates expressed one or both components at one of the temperatures at least, and 11.8% of the isolates did not express curli or cellulose. Cellulose production was significantly higher at 25 °C. On the other hand, curli production was significantly higher at 37 °C. The study data indicate that there is no association between biofilm production and in vivo pathogenicity.

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Ewers C, Janssen T, Kiessling S, Philipp HC, Wieler LH (2004) Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol 104:91–101.  https://doi.org/10.1016/j.vetmic.2004.09.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Nolan LK, Barnes HJ, Vaillancourt JP, Abdul-Aziz T (2013) Colibacillosis. In: Swaine DE (ed) Diseases of poultry, 13th edn. University Press, Ames, pp 751–805Google Scholar
  3. 3.
    Collingwood C, Kemmett K, Williams N, Wigley P (2014) Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Front Vet Sci 1:1–4.  https://doi.org/10.3389/fvets.2014.00005 CrossRefGoogle Scholar
  4. 4.
    Bauchart P, Germon P, Brée A, Oswald E, Hacker J, Dobrindt U (2010) Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli—search for factors involved in host specificity or zoonotic potential. Microb Pathog 49:105–115.  https://doi.org/10.1016/j.micpath.2010.05.004 CrossRefPubMedGoogle Scholar
  5. 5.
    Ewers C, Antão EM, Diehl I, Philipp HC, Wieler LH (2009) Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. J Appl Environ Microbiol 75:184–192.  https://doi.org/10.1128/AEM.01324-08 CrossRefGoogle Scholar
  6. 6.
    Ferreira AJ, Knöbl T (2009) Colibacilose aviária. In: Berchieri A Jr et al (ed) Doença das aves, 2nd edn. FACTA, Campinas, pp 197–205Google Scholar
  7. 7.
    Oosterik LH, Tuntufye HN, Butaye P, Goddeeris BM (2014) Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli. Vet J 202:561–565.  https://doi.org/10.1016/j.tvjl.2014.10.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Skyberg JA, Siek KE, Doetkott C, Nolan LK (2007) Biofilm formation by avian Escherichia coli in relation to media source phylogeny. J Appl Microbiol 102:548–554.  https://doi.org/10.1111/j.1365-2672.2006.03076.x CrossRefPubMedGoogle Scholar
  9. 9.
    Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O, Desvaux M, Renier S, Nychas GJ (2014) Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 97:298–309.  https://doi.org/10.1016/j.meatsci.2013.05.023 CrossRefPubMedGoogle Scholar
  10. 10.
    Rodrigues LB, Dos Santos LR, Tagliari VZ, Rizzo NN, Trenhago G, de Oliveira AP, Goetz F, do Nascimento VP (2010) Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Braz J Microbiol 41:1082–1085.  https://doi.org/10.1590/S1517-838220100004000029 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432.  https://doi.org/10.1111/j.1472-765X.2004.01513.x CrossRefPubMedGoogle Scholar
  12. 12.
    Azevedo NF, Cerca N (2012) Matriz dos biofilmes: o truque para sobreviver nas mais hostis condições ambientais. In: Azevedo NF, Cerca N (eds) Biofilmes: na Saúde, no Ambiente, na Indústria, 1st edn. Publindústria, Porto, pp 23–25Google Scholar
  13. 13.
    Gião MS, Vieira MJ, Azevedo NF (2012) Biofilmes em condutas de água potável. In: Azevedo NF, Cerca N (eds) Biofilmes: na Saúde, no Ambiente, na Indústria, 1st edn. Publindústria, Porto, pp 163–171Google Scholar
  14. 14.
    Serra DO, Richter AM, Hengges R (2013) Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195:5540–5554.  https://doi.org/10.1128/JB.00946-13 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463CrossRefPubMedGoogle Scholar
  16. 16.
    Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. In: Romeo T (ed) Bacterial biofilms, 1st edn. Springer, Berlin, pp 250–279Google Scholar
  17. 17.
    Gualdi L, Tagliabue L, Bertagnoli S, Ieranò T, De Castro C, Landini P (2008) Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154:2017–2024.  https://doi.org/10.1099/mic.0.2008/018093-0 CrossRefPubMedGoogle Scholar
  18. 18.
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669.  https://doi.org/10.1093/femsre/fuv015 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bokranz W, Wang X, Tschäpe H, Römling U (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54:1171–1182.  https://doi.org/10.1099/jmm.0.46064-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Milanov DS, Prunić BZ, Velhner MJ, Pajić ML, Čabarkapa IS (2015) RDAR morphotype: a resting stage of some Enterobacteriaceae. Food Feed Res 42:43–50.  https://doi.org/10.5937/FFR1501043M CrossRefGoogle Scholar
  21. 21.
    Uhlich GA, Cooke PH, Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157: H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2562–2564.  https://doi.org/10.1128/AEM.72.4.2564-2572.2006 CrossRefGoogle Scholar
  22. 22.
    Nakazato G, de Campos TA, Stehling EG, Brocchi M, da Silveira WD (2009) Virulence factors of avian pathogenic Escherichia coli (APEC). Pesq Vet Bras 29:479–486.  https://doi.org/10.1590/S0100-736X2009000700001 CrossRefGoogle Scholar
  23. 23.
    Souza GF, Rocha SLS, Furian TQ, Borges KA, Salle FO, Moraes LB, Moraes HLS, Salle CTP (2016) Classification of avian pathogenic Escherichia coli by a novel pathogenicity index based on an animal model. Acta Sci Vet 44:1–6Google Scholar
  24. 24.
    Lee MD, Nolan LK, Dufour-Zavala L (2008) Colibacillosis. In: Dufour-Zavala L (ed) A laboratory manual for the isolation, identification and characterization of avian pathogens, 5th edn. American Association of Avian Pathologists, Georgia, pp 10–11Google Scholar
  25. 25.
    Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899.  https://doi.org/10.1111/j.1600-0463.2007.apm_630.x CrossRefPubMedGoogle Scholar
  26. 26.
    Borges KA, Furian TQ, Souza SN, Menezes R, Lima DA, Fortes FBB, Salle CTP, Moraes HLS, Nascimento VP (2018) Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity. Microb Pathog 118:238–241.  https://doi.org/10.1016/j.micpath.2018.03.039 CrossRefPubMedGoogle Scholar
  27. 27.
    Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83:89–105CrossRefPubMedGoogle Scholar
  28. 28.
    Cappitelli F, Polo A, Villa F (2014) Biofilm formation in food processing environments is still poorly understood and controlled. Food Eng Rev 6:1–2.  https://doi.org/10.1007/s12393-014-9077-8 CrossRefGoogle Scholar
  29. 29.
    Do Amaral AL (2004) Drinking water as a risk factor to poultry health. Braz J Poult Sci 6:191–199.  https://doi.org/10.1590/S1516-635X2004000400001 CrossRefGoogle Scholar
  30. 30.
    Gerstel U, Römling U (2003) The csgD promoter, a control unit for biofilm formation in Salmonella Typhimurium. Res Microbiol 154:659–667.  https://doi.org/10.1016/j.resmic.2003.08.005 CrossRefPubMedGoogle Scholar
  31. 31.
    Čabarkapa I, Škrinjar M, Lević J, Kokić B, Blagojev N, Milanov D, Suvajdžić L (2015) Biofilm forming ability of Salmonella Enteritidis in vitro. Acta Vet (Beogr) 65:371–389.  https://doi.org/10.1515/acve-2015-0031 CrossRefGoogle Scholar
  32. 32.
    Yaron S, Römling U (2014) Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 7:496–516.  https://doi.org/10.1111/1751-7915.12186 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Beloin C, Ghigo JM (2005) Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19.  https://doi.org/10.1016/j.tim.2004.11.008 CrossRefPubMedGoogle Scholar
  34. 34.
    Costerton JW (2007) Toward a unified biofilm theory. In: Costerton JW (ed) The biofilm primer, 1st edn. Springer, Berlin, pp 169–180CrossRefGoogle Scholar
  35. 35.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890.  https://doi.org/10.3201/eid0809.020063 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575.  https://doi.org/10.1038/nrmicro.2016.94 CrossRefPubMedGoogle Scholar
  37. 37.
    Römling U, Bian Z, Hammar M, Sierralta WD, Normark S (1998) Curli fibers are highly conserved between Salmonella Typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731PubMedPubMedCentralGoogle Scholar
  38. 38.
    Diedrich LN (2017) Avaliação da relação dos grupos filogenéticos com a formação de biofilme em amostras de Escherichia coli uropatogênica (UPEC). Dissertation, Universidade Federal do Rio Grande do SulGoogle Scholar
  39. 39.
    Emmery BD, Furian TQ, Pilatti RM, Chitolina GZ, Borges KA, Salle CTP, Moraes HLS (2017) Evaluation of the biofilm formation capacity of Pasteurella multocida strains isolated from cases of fowl cholera and swine lungs and its relationship with pathogenicity. Pesq Vet Bras 37:1041–1048.  https://doi.org/10.1590/s0100-736x2017001000001 CrossRefGoogle Scholar
  40. 40.
    Jain A, Agarwal A (2009) Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J Microbiol Methods 76:88–92.  https://doi.org/10.1016/j.mimet.2008.09.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Suelle V. Rodrigues
    • 1
  • Vanessa Laviniki
    • 2
  • Karen A. Borges
    • 1
  • Thales Q. Furian
    • 1
  • Hamilton L. S. Moraes
    • 1
  • Vladimir P. Nascimento
    • 1
  • Carlos T. P. Salle
    • 1
  1. 1.Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia AviáriaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de Veterinária, Medicina Veterinária PreventivaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations