Advertisement

Current Microbiology

, Volume 76, Issue 1, pp 124–129 | Cite as

Biofilm Formation in Different Salmonella Serotypes Isolated from Poultry

  • Paula L. A. P. A. Silva
  • Luiz Ricardo Goulart
  • Thais F. M. Reis
  • Eliane P. Mendonça
  • Roberta T. MeloEmail author
  • Victor A. S. Penha
  • Phelipe A. B. M. Peres
  • Patrícia G. Hoepers
  • Marcelo E. Beletti
  • Belchiolina B. Fonseca
Article
  • 100 Downloads

Abstract

Little is known about Salmonella biofilm assembly, making the prevention of the disease a challenge in the poultry production chain. The objective of the present study was then to evaluate biofilm formation from different serotypes of Salmonella spp. in both polystyrene plates and eggshells. Salmonella Gallinarum and S. Minnesota were both classified as producers of biofilms of moderate intensity. Interestingly, S. Gallinarum produces biofilm even though being a serotype without flagellum and not having the lux gene in its genome, suggesting that there might be other important structures and genes associated with biofilm formation. Regarding Enteritidis, Typhimurium, Typhimurium variant, and Heidelberg serotypes, despite having high counts, BFI (Biofilm Formation Index) showed low biofilm production, probably due to the scarcity of extracellular matrix produced by such strains. A turkey eggshell model was then used for S. Enteritidis and S. Heidelberg biofilm formation. The results from the microbial count and scanning electron microscopy showed that Salmonella serotypes were also able to generate biofilm in eggshells, suggesting the presence of biofilms in poultry producing farms, a main concern for the poultry production industry.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the CNPq for their financial support.

References

  1. 1.
    Battistoni A (2003) Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis. Biochem Soc Trans 31:1326–1329.  https://doi.org/10.1042/bst0311326 CrossRefGoogle Scholar
  2. 2.
    Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AHM (2015) Prevention of biofilm formation and removal of existing biofilms by extracellular DNAses of Campylobacter jejuni. PLoS ONE 10:e0121680.  https://doi.org/10.1371/journal.pone.0121680 CrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control –CDC (2014) Multistate Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections Linked to Foster Farms Brand ChickenGoogle Scholar
  4. 4.
    Center for Disease Control-CDC (2016) Making food safer to eat: reducing contamination from the farm to the table. http://www.cdc.gov/vitalsigns/foodsafety/. Accessed 07 May 2018
  5. 5.
    El Hag M, Feng Z, Su Y, Wang X, Yassin A, Chen S, Peng D, Liu X (2017) Contribution of the csgA and bcsA genes to Salmonella enteric serovar Pullorum biofilm formation and virulence. Avian Pathol 46:541–547.  https://doi.org/10.1080/03079457.2017.1324198 CrossRefGoogle Scholar
  6. 6.
    Kim J, Park C, Kim Y (2015) Role of flgA for flagellar biosynthesis and biofilm formation of Campylobacter jejuni NCTC11168. J Microbiol Biotechnol 11:1871–1879.  https://doi.org/10.4014/jmb.1504.04080 CrossRefGoogle Scholar
  7. 7.
    Korber DR, Lawrence JR, Sutton B, Caldwell DE (1989) Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot Pseudomonas fluorescens. Microb Ecol 18:1–19.  https://doi.org/10.1007/BF02011692 CrossRefGoogle Scholar
  8. 8.
    Li J (2016) The effects of meat juice on biofilm formation of Campylobacter and Salmonella. Thesis, The University of British ColumbiaGoogle Scholar
  9. 9.
    Naves P (2008) Measurement of biofilm formation by clinical isolates of Escherichia coli is method dependent. J Appl Microbiol 105:585–590.  https://doi.org/10.1111/j.1365-2672.2008.03791.x CrossRefGoogle Scholar
  10. 10.
    Norris TL, Baumler AJ (1999) Phase variation of the Ipf operon is a mechanism to evade cross-immunity between Salmonella serotypes. Proc Natl Acad Sci USA 96:13393–13398. https://doi.org/PMID:10557331CrossRefGoogle Scholar
  11. 11.
    Rajan R, Zhu J, Hu X, Pei D, Bell CE (2005) Crystal structure of S-ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate. Biochemistry 44:3745–3753.  https://doi.org/10.1021/bi0477384 CrossRefGoogle Scholar
  12. 12.
    Sanjay MK, Shrideshikan SM, Usha MS, Philipraj A, Gaddad SM, Shivannavar CT (2010) Detection, amplification & sequence homology of sodC in clinical isolates of Salmonella sp. Indian J Med Res 131:565–570Google Scholar
  13. 13.
    Steenackers H, Hermans K, Vanderleyden J, Keersmaecker SCJ (2012) Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Intern 45:502–531CrossRefGoogle Scholar
  14. 14.
    Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179. https://doi.org/PMID:10699673CrossRefGoogle Scholar
  15. 15.
    Sukupolvi S, Lorenz RG, Gordon JI, Bian Z, Pfeifer JD, Normark SJ, Rhen M (1997) Expression of thin aggregative fimbriae promotes interaction of Salmonella Typhimurium SR-11 with mouse small intestinal epithelial cells. Infect Immun 65:5320–5325. https://doi.org/PMID:9393832Google Scholar
  16. 16.
    Sulaeman S (2009) Comparison between the biofilm initiation of Campylobacter jejuni and Campylobacter coli strains to an inert surface using BioFilm Ring Test. J Appl Microbiol 108:1303–1312.  https://doi.org/10.1111/j.1365-2672.2009.04534.x CrossRefGoogle Scholar
  17. 17.
    Sun J, Hobert ME, Rao AS, Neish AS, Madara JL (2004) Bacterial activation of -catenin signaling in human epithelia. Am J Physiol Gastrointest Liver Physiol 287:220 – 227. https://doi.org/PMCID:PMC356064
  18. 18.
    Turcotte C, Woodward MJ (1993) Cloning, DNA nucleotide sequence and distribution of gene encoding the SEF14 fimbrial antigen of Salmonella Enteritidis. J Gen Microbiol 139:1477–1485.  https://doi.org/10.1099/00221287-139-7-1477 CrossRefGoogle Scholar
  19. 19.
    Turki Y, Ouzari H, Khessairi A, Hassen A (2014) Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes. J Gen Appl Microbiol 60:123–130. https://doi.org/PMID 25273985
  20. 20.
    Voss-rech D, Vaz CS, Alves L, Coldebella A, Leão JA, Rodrigues DP, Back A (2015) A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult Sci 94:433–441.  https://doi.org/10.3382/ps/peu081 CrossRefGoogle Scholar
  21. 21.
    World Health Organization – WHO (2011) Critically Important Antimicrobials for Human Medicine. 3rd Revision. SwitzerlandGoogle Scholar
  22. 22.
    Zhang RG, Pappas KM, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974.  https://doi.org/10.1038/nature00833 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Paula L. A. P. A. Silva
    • 1
  • Luiz Ricardo Goulart
    • 2
  • Thais F. M. Reis
    • 1
  • Eliane P. Mendonça
    • 1
  • Roberta T. Melo
    • 1
    • 3
    Email author
  • Victor A. S. Penha
    • 4
  • Phelipe A. B. M. Peres
    • 1
  • Patrícia G. Hoepers
    • 1
    • 5
  • Marcelo E. Beletti
    • 1
  • Belchiolina B. Fonseca
    • 1
  1. 1.Faculdade de Medicina Veterinária da Universidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Instituto de Genética e Bioquímica da Universidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Faculdade de Medicina Veterinária da Universidade de UberabaUberabaBrazil
  4. 4.Programa de Pós Graduação em Ecologia e Conservação da Universidade Federal do ParanáCuritibaBrazil
  5. 5.Animal Health Corporative Area, Foods S/ACuritibaBrazil

Personalised recommendations