Current Microbiology

, Volume 76, Issue 2, pp 133–143 | Cite as

Wolbachia Population in Vectors and Non-vectors: A Sustainable Approach Towards Dengue Control

  • Ipsita Mohanty
  • Animesha Rath
  • Swayam Prava Swain
  • Nitika Pradhan
  • Rupenangshu Kumar HazraEmail author


Wolbachia is gram negative obligate endosymbiont known for reproductive manipulation in the host. It is important to study the presence of natural Wolbachia in mosquitoes which can later help in understanding the effect of transfected strain on indigenous strain. With this view, the present study is undertaken to focus on the prevalence, diversity, infection frequencies, phylogeny and density of indigenous Wolbachia strains in wild mosquito species of Odisha. Our study confirms Wolbachia presence in Ae. albopictus, Cx. quinquefasciatus, Cx. vishnui, Cx. gelidus, Ar. subalbatus, Mn. uniformis, and Mn. indiana. Wolbachia in the above mosquitoes were separated into two supergroups (A and B). Ae. albopictus, the major vector of dengue and chikungungunya had both super-infection and mono-infection. The ovaries of Ae. albopictus were highest in density of Wolbachia as compared to midguts or salivary glands. wAlBA and wAlbB density were variable in mosquitoes of F1 generation for both the sex and at different age. We also found that Wolbachia super-infection in females tends to increase whereas wAlbA density reduced completely as compared to wAlbB in males when they grew old. Giemsa stained squashed ovaries revealed pink pleomorphic Wolbachia cells with different shapes and forms. This study is unique in its kind covering the major aspects of the endosymbiont Wolbachia and focusing on its potential as a biocontrol agent in arboviral outbreaks. Knowledge on potential of the indigenous strain and interactions between Wolbachia and viruses can be utilized further to reduce the global burden of vector borne diseases.



We are grateful to the Director, RMRC for providing a platform for this study. We thank Director, NVBDCP, Bhubaneswar and staff for sharing data for this study. We thank insectarium staff Ms Santoshini Dash and Ms Jyotiprabha Garanayak of RMRC, Bhubaneswar for technical help. We are extremely delightful to thank Lady Tata Memorial Trust, Mumbai, for providing scholarship for PhD to Miss Ipsita Mohanty.


This work is funded by Lady Tata Memorial Trust, Mumbai, India and Indian Council of Medical Research, New Delhi, India.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

All procedures performed in the study involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. 1.
    Aliota MT, Walker EC, Yepes AU, Velez ID, Christensen BM, Osorio JE (2016) The wMel strain of Wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 10:e0004677CrossRefGoogle Scholar
  2. 2.
    Aliota MT, Peinado SA, Velez ID, Osorio JE (2016) The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Sci Rep 6Google Scholar
  3. 3.
    Barraud PJ (1934) The fauna of British India, including Ceylon and Burma. In: Diptera V (ed) Family Culicidae, Tribe Megharini and Culicini. Taylor and Francis, London, pp 217–246Google Scholar
  4. 4.
    Chai HN, Du YZ, Qiu BL, Zhai BP (2011) Detection and phylogenetic analysis of Wolbachia in the Asiatic rice leafroller, Cnaphalocrocis medinalis, in Chinese populations. J Insect Sci 11:123CrossRefGoogle Scholar
  5. 5.
    Christophers SR (1993) Family Culicidae. Tribes Anophelini: The fauna of British India, including Ceylon and Burma –Diptera, vol 4. Taylor and Francis, London, pp 1–271Google Scholar
  6. 6.
    Das B, Satapathy T, Kar SK, Hazra RK (2014) Genetic structure and Wolbachia genotyping in naturally occurring populations of Aedes albopictus across contiguous landscapes of Orissa, India. PLoS ONE 9:e94094CrossRefGoogle Scholar
  7. 7.
    de Oliveira CD, Gonçalves DS, Baton LA, Shimabukuro PHF, Carvalho FD, Moreira LA (2015) Broader prevalence of Wolbachia in insects including potential human disease vectors. Bull Entomol Res 105:305–315CrossRefGoogle Scholar
  8. 8.
    Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160CrossRefGoogle Scholar
  9. 9.
    Dutra HL, DosSantos LM, Caragata EP, Silva JB, Villela DA, Maciel-de- Freitas R, Moreira LA (2015) From lab to field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes. PLoS Negl Trop Dis 9:e0003689CrossRefGoogle Scholar
  10. 10.
    Glaser R, Meola MA (20100 The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile Virus infection. Plos ONE 5: e11977Google Scholar
  11. 11.
    Harbach RE, Howard TM (2007) Index of currently recognized mosquito species (Diptera: Culicidae). Eur Mosq Bull 23:1–66Google Scholar
  12. 12.
    Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702CrossRefGoogle Scholar
  13. 13.
    Helinski ME, Parker AG, Knols BG (2006) Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J 5:41CrossRefGoogle Scholar
  14. 14.
    Hertig M (1936) The rickettsia, Wolbachia pipientis (Gen. Et SP.N.) and associated inclusions of the mosquito Culex pipiens. Parasitol 28:453–486CrossRefGoogle Scholar
  15. 15.
    Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neil SL (2004) Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8:e3115CrossRefGoogle Scholar
  16. 16.
    Hughes GL, Ren X, Ramirez JL, Sakamoto JM, Bailey JA, Jedlicka AE, Rasgon JL (2011) Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction. PLoS Pathog 7:e1001296CrossRefGoogle Scholar
  17. 17.
    Iturbe-Ormaetxe I, Walker T, O’ Neill SL (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12:508–518CrossRefGoogle Scholar
  18. 18.
    Jeffries CL, Walker T (2015) The potential use of Wolbachia-based mosquito biocontrol strategies for Japanese encephalitis. PLoS Negl Trop Dis 9:e0003576CrossRefGoogle Scholar
  19. 19.
    Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HCJ, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 6:e1001143CrossRefGoogle Scholar
  20. 20.
    Karunamoorthi K, Sabesan S (2013) Insecticide resistance in insect vectors of disease with special reference to mosquitoes: a potential threat to global public health. Health Scope 2:4–18CrossRefGoogle Scholar
  21. 21.
    Kittayapong P, Baisley KJ, Baimai V, O’Neill SL (2000) Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol. 37:340–345CrossRefGoogle Scholar
  22. 22.
    Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O’Neill SL, Ooi EE, Ritchie SA, Ryan PA, Scott TW, Simmons CP, Weaver SC (2015) Assessing the epidemiological effect of Wolbachia for dengue control. Lancet Infect Dis 15:862–866CrossRefGoogle Scholar
  23. 23.
    Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, Renshaw M (2015) Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J 14:173CrossRefGoogle Scholar
  24. 24.
    Nguyen TH, Nguyen HL, Nguyen TY, Vu SN, Tran ND, Le TN, Vien QM, Bui TC, Le HT, Kutcher S, Hurst TP, Duong TTH, Jeffery JAL, Darbro JM, Kay BH, Iturbe-Ormaetxe I, Popovici J, Montgomery BL, Turley AP, Zigterman F, Cook H, Cook PE, Johnson PH, Ryan PA, Paton CJ, Ritchie SA, Simmons CP, O’Neill SL, Hoffmann AA (2015) Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors 8:563CrossRefGoogle Scholar
  25. 25.
    O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702CrossRefGoogle Scholar
  26. 26.
    O’Neill SL, Gooding RH, Aksoy S (1993) Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7:377–383CrossRefGoogle Scholar
  27. 27.
    Osei-Poku J, Han C, Mbogo CM, Jiggins FM (2012) Identification of Wolbachia strains in mosquito disease vectors. PLoS ONE 7:e49922CrossRefGoogle Scholar
  28. 28.
    Ravikumar H, Prakash BM, Sampathkumar S, Puttaraju HP (2011) Molecular subgrouping of Wolbachia and bacteriophage WO infection among some Indian Drosophila species. J Genet 90(3):507–510CrossRefGoogle Scholar
  29. 29.
    Ravikumar H, Ramachandraswamy N, Sampathkumar S, Prakash BM, Huchesh HC, Uday J, Puttaraju HP (2010) A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae). Trop Biomed 27(3):384–393Google Scholar
  30. 30.
    Ritchie S (2014) Rear and release: a new paradigm for dengue control. Austral Entomol 53:363–367CrossRefGoogle Scholar
  31. 31.
    Ruang Areerate T, Kittayapong P, Baimai V, O’Neill SL (2003) Molecular phylogeny of Wolbachia endosymbionts in Southeast Asian mosquitoes (Diptera:Culicidae) based on wsp gene sequences. J Med Entomol 40:1–5CrossRefGoogle Scholar
  32. 32.
    Schilthuizen MO, Stouthamer R (1997) Horizontal transmission of parthenogenesis inducing microbes in Trichogramma wasps. Proc R Soc Biol Sci 264:361–366CrossRefGoogle Scholar
  33. 33.
    Serpa LL, Marques GR, de Lima AP, Voltolini JC, de Arduino M, Barbosa GL, Andrade VR, Lima de VL (2013) Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteoro-logical variables, municipality of Sao Sebastiao, Sao Paulo State, Brazil. Parasit Vectors 6:321CrossRefGoogle Scholar
  34. 34.
    Skinner SW (1982) Maternally inherited sex ratio in the parasitoid wasp Nasonia vitripennis. Science 215:1133–1134CrossRefGoogle Scholar
  35. 35.
    Stouthamer R, Breeuwer JA, Hurst GD (1990) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102CrossRefGoogle Scholar
  36. 36.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  37. 37.
    Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15:437–442CrossRefGoogle Scholar
  38. 38.
    Tortosa P, Courtiol A, Moutailler S, Failloux AB, Meil W (2008) Chikungunya-Wolbachia interplay in Aedes albopictus. Insect Mol Biol 17(6):677–684CrossRefGoogle Scholar
  39. 39.
    Tortosa P, Charlat S, Labbe P, Dehecq JS, Barre H, Weill M (2010) Wolbachia age-sex-specific density in Ae. albopictus: A host evolutionary response to cytoplasmic incompatibility? PLoS ONE 5:e9700CrossRefGoogle Scholar
  40. 40.
    Tsai KH, Lien JC, Huang CG, Wu WJ, Chen WJ (2004) Molecular (sub)grouping of endosymbiont Wolbachia infection among mosquitoes of Taiwan. J Med Entomol 41(4):677–683CrossRefGoogle Scholar
  41. 41.
    Valette V, Essono PYB, Le Clec’h W, Johnson M, Bech N, Grandjean F (2013) Multi-infections of feminizing Wolbachia strains in natural populations of the terrestrial isopod Armadillidium vulgare. PLoS ONE 8:e82633CrossRefGoogle Scholar
  42. 42.
    Van den Berg H, Velayudhan R, Ejov M (2013) Regional framework for surveillance and control of invasive mosquito vectors and re-emerging vector-borne diseases, 2014–2020. World Health Organ 26Google Scholar
  43. 43.
    VanMeer MM, Witteveldt J, Stouthamer R (1999) Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol Biol 8:399–408CrossRefGoogle Scholar
  44. 44.
    Wang Z, Shen ZR, Song Y, Liu HY, Li ZX (2009) Distribution and diversity of Wolbachia in different populations of the wheat aphid Sitobion miscanthi (Hemiptera: Aphididae) in China. Eur J Entomol 106(1):49–55CrossRefGoogle Scholar
  45. 45.
    Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609CrossRefGoogle Scholar
  46. 46.
    Werren JH, Zhang W, Guo LR (2005) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc London B 261:55–71Google Scholar
  47. 47.
    WHO (1975) Manual on practical entomology in malaria part-II, methods tech. Offset Publication 13 World Health Organization, GenevaGoogle Scholar
  48. 48.
    Wiwatanaratanabutr I, Kittayapong P (2009) Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. J Invertebr Pathol 102:220–224CrossRefGoogle Scholar
  49. 49.
    Wiwatanaratanabutr I (2013) Geographic distribution of wolbachial infections in mosquitoes from Thailand. J Invertebr Pathol 114:337–340CrossRefGoogle Scholar
  50. 50.
    Wright JD, Barr AR (1981) Wolbachia and the normal and incompatible eggs of Aedes polyneslensis (Diptera:Culicidae). J Invert Pathol 38:409–418CrossRefGoogle Scholar
  51. 51.
    Yamada H, Parker AG, Oliva CF, Balestrino F, Gilles JRL (2014) X-Ray-induced sterility in Aedes albopictus (Diptera: Culicidae) and male longevity following irradiation. J Med Entomol 51:811–816CrossRefGoogle Scholar
  52. 52.
    Yeap H, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, Hoffmann AA (2014) Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7:58CrossRefGoogle Scholar
  53. 53.
    Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc B 265:509–515CrossRefGoogle Scholar
  54. 54.
    Zouache K, Voronin D, Tran-Van V, Mousson L, Failloux AB, Mavingui P (2009) Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS ONE 4:e6388CrossRefGoogle Scholar
  55. 55.
    Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7:e38544CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Regional Medical Research Centre (ICMR)BhubaneswarIndia
  2. 2.KIIT School of BiotechnologyKalinga Institute of Industrial TechnologyBhubaneswarIndia
  3. 3.Odisha University of Agriculture and TechnologyBhubaneswarIndia
  4. 4.Division of Medical Entomology, Regional Medical Research CentreIndian Council of Medical ResearchBhubaneswarIndia

Personalised recommendations