Advertisement

Current Microbiology

, Volume 76, Issue 1, pp 86–94 | Cite as

Isolation and Genome Sequence Characterization of Bacteriophage vB_SalM_PM10, a Cba120virus, Concurrently Infecting Salmonella enterica Serovars Typhimurium, Typhi, and Enteritidis

  • Sandeep Newase
  • Balu P. KapadnisEmail author
  • Ravindranath ShashidharEmail author
Article

Abstract

The prevalence of multidrug-resistant Salmonella is ever increasing and calls for alternatives to antibiotics. The use of phages has been anticipated to reduce the multidrug-resistant human pathogens in food environment. Salmonella phage vB_SalM_PM10 (PM10) was isolated from sewage-polluted river in India. It shows an icosahedral head (94 ± 4 nm) along with a long contractile tail (106 ± 7 × 18 ± 2 nm), a morphotype of family Ackermannviridae. Additionally, the phage displayed the features resembling to existing Cba120viruses. Phage PM10 could infect S. enterica serovars Typhimurium, Typhi, and Enteritidis. The genome sequencing analysis of phage PM10 revealed circular 158.08 kb double-stranded DNA, with the GC content of 44.6%. Two hundred and nine ORFs, 171 putative promoters, 122 rho-independent terminators, and 5 transfer RNA encoding genes were found in the genome. The genome-wide comparisons and phylogenetic analyses showed that phage PM10 is closely related to Salmonella phage PhiSH19. Comparison of the tail-spike protein sequences encoded in PM10 and PhiSH19 genome showed the variation, which might have facilitated PM10’s simultaneous infectivity to aforementioned S. enterica serovars. This is a varied host range than that of PhiSH19 or any other Cba120viruses.

Notes

Acknowledgements

Authors thank Dr. Anand Ballal and Dr. Alka Gupta (Molecular Biology Division, Bhabha Atomic Research Centre) for their kind help in taking TEM micrographs. BPK is thankful to University Grants Commission (UGC), India for Emeritus Professor fellowship [No.F.6-6/2017 18/EMERITUS-2017-18-GEN-9819/(SA-II)]. SN is thankful to Department of Atomic Energy (DAE), India, for the fellowship support under Bhabha Atomic Research Centre—Savitribai Phule Pune University (GOI–E–156) collaborative research Ph. D. program. No external funding was taken for this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

284_2018_1588_MOESM1_ESM.doc (212 kb)
Supplementary material 1 (DOC 212 KB)

References

  1. 1.
    Majowicz SE, Musto J, Scallan E et al (2010) The global burden of Nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889CrossRefGoogle Scholar
  2. 2.
    Saravanan S, Purushothaman V, Murthy TR et al (2015) Molecular epidemiology of Nontyphoidal Salmonella in poultry and poultry products in India: implications for human health. Indian J Microbiol 55(3):319–326CrossRefGoogle Scholar
  3. 3.
    Srinivasiah S, Bhavsar J, Thapar K et al (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159(5):349–357CrossRefGoogle Scholar
  4. 4.
    Switt AI, Sulakvelidze A, Wiedmann M et al (2015) Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 1225:237–287CrossRefGoogle Scholar
  5. 5.
    Mahony J, McAuliffe O, Ross RP et al (2011) Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotechnol 22:157–163CrossRefGoogle Scholar
  6. 6.
    Goodridge L, Fong K, Wang S et al (2018) Bacteriophage-based weapons for the war against foodborne pathogens. Curr Opin Food Sci 20:69–75CrossRefGoogle Scholar
  7. 7.
    Ahiwale SS, Bankar AV, Tagunde SN et al (2013) Isolation and characterization of a rare waterborne lytic phage of Salmonella enterica serovar Paratyphi B. Can J Microbiol 59:318–323CrossRefGoogle Scholar
  8. 8.
    Karpe YA, Kanade GD, Pingale KD et al (2016) Genomic characterization of Salmonella bacteriophages isolated from India. Virus Genes 52:117–126CrossRefGoogle Scholar
  9. 9.
    Kropinski AM, Mazzocco A, Waddell TE et al (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76CrossRefGoogle Scholar
  10. 10.
    Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10(3):e0118557CrossRefGoogle Scholar
  11. 11.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, II edn. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  12. 12.
    Piednoël M, Sousa A, Renner SS (2015) Transposable elements in a clade of three tetraploids and a diploid relative, focusing on Gypsy amplification. Mobile DNA 6:5CrossRefGoogle Scholar
  13. 13.
    Hunt M, Gall A, Ong SH et al (2015) IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics 31:2374–2376CrossRefGoogle Scholar
  14. 14.
    Hernandez D, François P, Farinelli L et al (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809CrossRefGoogle Scholar
  15. 15.
    Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230CrossRefGoogle Scholar
  16. 16.
    Adriaenssens EM, Wittmann J, Kuhn JH et al (2018) Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 163:1125–1129CrossRefGoogle Scholar
  17. 17.
    Olson SA (2002) EMBOSS opens up sequence analysis. Eur Mol Biol 3:87–91Google Scholar
  18. 18.
    Meier-Kolthoff JP, Göker M (2017) VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33:3396–3404CrossRefGoogle Scholar
  19. 19.
    Meier-Kolthoff JP, Auch AF, Klenk HP et al (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  20. 20.
    Leskinen K, Tuomala H, Wicklund A et al (2017) Characterization of vB_SauM-fRuSau02, a twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses 9:258CrossRefGoogle Scholar
  21. 21.
    Adriaenssens EM, Ackermann HW, Anany H et al (2012) A suggested new bacteriophage genus: “Viunalikevirus”. Arch Virol 157:2035–2046CrossRefGoogle Scholar
  22. 22.
    Hooton SP, Timms AR, Rowsell J et al (2011) Salmonella Typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. Virol J 8:498CrossRefGoogle Scholar
  23. 23.
    Park M, Lee JH, Shin H et al (2012) Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7. Appl Environ Microbiol 78:58–69CrossRefGoogle Scholar
  24. 24.
    Chae SJ, Kwon T, Lee S et al (2016) Genome Sequence of Bacteriophage GG32, Which Can Infect both Salmonella enterica Serovar Typhimurium and Escherichia coli O157:H7. Genome Announc 4(6):e00802–e00816CrossRefGoogle Scholar
  25. 25.
    Abuladze T, Li M, Menetrez MY et al (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157: H7. Appl Environ Microbiol 74:6230–6238CrossRefGoogle Scholar
  26. 26.
    Luna AJ, Wood TL, Chamakura KR et al (2013) Complete genome of Salmonella enterica serovar Enteritidis myophage Marshall. Genome Announc 1:e00867–e00813CrossRefGoogle Scholar
  27. 27.
    Tatsch CO, Wood TL, Chamakura KR et al (2013) Complete genome of Salmonella enterica serovar Typhimurium myophage Maynard. Genome Announc 1(6):e00866–e00813CrossRefGoogle Scholar
  28. 28.
    Tu J, Park T, Morado DR et al (2017) Dual host specificity of phage SP6 is facilitated by tailspike rotation. Virology 507:206–215CrossRefGoogle Scholar
  29. 29.
    Walter M, Fiedler C, Grassl R et al (2008) Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus. J Virol 82:2265–2273CrossRefGoogle Scholar
  30. 30.
    Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1(4):298–303CrossRefGoogle Scholar
  31. 31.
    Villafane R, Costa S, Ahmed R et al (2005) Conservation of the N-terminus of some phage tail proteins. Arch Virol 150:2609–2621CrossRefGoogle Scholar
  32. 32.
    Veesler D, Cambillau C (2011) A common evolutionary origin for tailed bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75(3):423–433CrossRefGoogle Scholar
  33. 33.
    Gvakharia BO, Hanson E, Koonin EK et al (1996) Identification of a second functional glutaredoxin encoded by the bacteriophage T4 genome. J Biol Chem 271:15307–15310CrossRefGoogle Scholar
  34. 34.
    Goodrich-Blair H, Shub DA (1996) Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84:211–221CrossRefGoogle Scholar
  35. 35.
    Palleja A, Harrington ED, Bork P (2008) Large gene overlaps in prokaryotic genomes: result of functional constraints or mispredictions? BMC Genom 9(1):335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MicrobiologySavitribai Phule Pune UniversityPuneIndia
  2. 2.Food Technology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations