Advertisement

Current Microbiology

, Volume 75, Issue 12, pp 1619–1625 | Cite as

Isolation and Complete Genome Sequence of a Novel Marinobacter Phage B23

  • Min Zhu
  • Min Wang
  • Yong Jiang
  • Siyuan You
  • Guihua Zhao
  • Yundan Liu
  • Qingwei Yang
  • Qian Liu
  • Zhaoyang Liu
  • Zheng Gong
  • Hongbing Shao
Article

Abstract

We used the double-agar layer method to isolate a novel Marinobacter marina bacteriophage, B23, from the surface water sample of the Bohai sea of China. There is some work to better understand the phage. The result of transmission electron microscopy revealed that B23 belongs to the family Siphoviridae with a head of 80 nm in diameter and a tail of 230 nm. Microbiological characterization evidenced that phage B23 is stable at the temperatures from − 25 to 60 °C, and showed vigorous vitality at pH between 4.0 and 12.0. One-step growth experiment showed that it had a longer latent period and higher lysis efficiency. Furthermore, the complete genome of B23 was sequenced and analyzed, which consists of a 35132 bp DNA with a G + C content of 59.8% and 50 putative open reading frames. The genome was divided into five parts, consisting of DNA replication and regulation, phage packaging, phage structure, host lysis and hypothetical protein.

Notes

Acknowledgements

We are grateful to the research vessel Dong Fang Hong 2, for providing the seawater samples. The research was funded by the National Natural Science Foundation of China (Nos. 31500339 and 41076088), the National Key Basic Research Program of China (973Program, Grant No: 2013CB429704), China Postdoctoral Science Foundation (Grant Nos. 2015M570612 and 2016T90649), and Fundamental Research Funds for the Central University of Ocean University of China (Grant Nos. 201762017, 201564010 and 201512008).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Motlagh AM et al (2017) Insights of phage-host interaction in hypersaline ecosystem through metagenomics analyses. Front Microbiol 8(8):352.  https://doi.org/10.3389/fmicb.2017.00352 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Labonté JM et al (2015) Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J 9(11):2386–2399.  https://doi.org/10.1038/ismej.2015.48 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jian H et al (2016) Filamentous phage sw1 is active and influences the transcriptome of the host at high-pressure and low-temperature. Environ Microbiol Rep 8(3):358.  https://doi.org/10.1111/1758-2229.12388 CrossRefPubMedGoogle Scholar
  4. 4.
    Duhaime MB, Wichels A, Waldmann J (2011) Ecogenomics and genome landscapes of marine Pseudoalteromonas phage h105/1. ISME J 5(1):107–121.  https://doi.org/10.1038/ismej.2010.94 CrossRefPubMedGoogle Scholar
  5. 5.
    Paez-Espino D et al (2016) Uncovering earth’s virome. Nature 536(7617):425.  https://doi.org/10.1038/nature19094 CrossRefPubMedGoogle Scholar
  6. 6.
    Gauthier MJ et al (1992) Marinobacter hydrocarbonoclasticus gen. nov. sp. nov. a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42(4):568.  https://doi.org/10.1099/00207713-42-4-568 CrossRefPubMedGoogle Scholar
  7. 7.
    Ivanova EP et al (2014) Draft genome sequences of Marinobacter similis A3d10T and Marinobacter salarius R9SW1T. Genome Announc 2(3):e00442-14.  https://doi.org/10.1128/genomeA.00442-14 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yuan J et al (2015) The diversity of pah-degrading bacteria in a deep-sea water column above the southwest Indian ridge. Front Microbiol 6:853.  https://doi.org/10.3389/fmicb.2015.00853 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Luo YJ et al (2015) Marinobacter Shengliensis sp. nov. a moderately halophilic bacterium isolated from oil-contaminated saline soil. Antonie Van Leeuwenhoek 107(4):1085–1094.  https://doi.org/10.1007/s10482-015-0401-y CrossRefPubMedGoogle Scholar
  10. 10.
    Bonin P et al (2015) Substrates specialization in lipid compounds and hydrocarbons of Marinobacter genus. Environ Sci Pollut Res 22(20):15347–15359.  https://doi.org/10.1007/s11356-014-4009-y CrossRefGoogle Scholar
  11. 11.
    Dombrowski N et al (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the deepwater horizon oil spill. Nat Microbiol 1(7):16057.  https://doi.org/10.1186/1471-2164-15-483 CrossRefPubMedGoogle Scholar
  12. 12.
    Raddadi N et al (2017) Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills. Microb Cell Fact 16(1):186.  https://doi.org/10.1186/s12934-017-0797-3 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rosenberg E et al (2010) The phage-driven microbial loop in petroleum bioremediation. Microb Biotechnol 3(4):467–472.  https://doi.org/10.1111/j.1751-7915.2010.00182.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696CrossRefGoogle Scholar
  15. 15.
    Middelboe M, Chan AM, Bertelsen SK (2010) Isolation and life-cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria. Man Aquat Viral Ecol 2014:149–180.  https://doi.org/10.4319/mave.2010.978-0-9845591-0-7.118 CrossRefGoogle Scholar
  16. 16.
    Shahrbabak SS et al (2013) Isolation, characterization and complete genome sequence of Phaxi: a phage of Escherichia coli o157: h7. Microbiology 159(8):1629–1638.  https://doi.org/10.1099/mic.0.063776-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Chakravorty S et al (2007) A detailed analysis of 16 s ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330.  https://doi.org/10.1016/j.mimet.2007.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xiu P, Liu R, Zhang D (2017) Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. suppress the motility of Vibrio alginolyticus. Appl Environ Microbiol 31:83(12).  https://doi.org/10.1128/AEM.00450-17
  19. 19.
    Jamalludeen N et al (2007) Isolation and characterization of nine bacteriophages that lyse o149 enterotoxigenic Escherichia coli. Vet Microbiol 124(1–2):47–57.  https://doi.org/10.1016/j.vetmic.2007.03.028 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang DB et al (2015) Characterization and genome sequencing of a novel bacteriophage ph101 infecting Pseudoalteromonas marina, bh101 from the Yellow sea of China. Curr Microbiol 71(5):594–600.  https://doi.org/10.1007/s00284-015-0896-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Deveau H et al (2006) Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72(6):4338.  https://doi.org/10.1128/AEM.02517-05 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage YeO3-12, Specific for Yersinia enterocolitica Serotype O:3, Is Related to Coliphages T3 and T7 This study. J Bacteriol 182(18):5114–5120CrossRefGoogle Scholar
  23. 23.
    Capra ML, Quiberoni A, Reinheimer JA (2004) Thermal and chemical resistance of Lactobacillus casei, and Lactobacillus paracasei bacteriophages. Lett Appl Microbiol 38(6):499–504.  https://doi.org/10.1111/j.1472-765X.2004.01525.x CrossRefPubMedGoogle Scholar
  24. 24.
    Karumidze N et al (2013) Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae, and Klebsiella oxytoca. Curr Microbiol 66(3):251.  https://doi.org/10.1007/s00284-012-0264-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Xu Y et al (2016) Characterization, genome sequence, and analysis of Escherichia phage cicc 80001, a bacteriophage infecting an efficient l-aspartic acid producing Escherichia coli. Food Environ Virol 8(1):1–9.  https://doi.org/10.1007/s12560-015-9218-0 CrossRefGoogle Scholar
  26. 26.
    Liu Z et al (2016) Isolation and genome sequencing of a novel Pseudoalteromonas phage ph1. Curr Microbiol 74(2):1–7.  https://doi.org/10.1007/s00284-016-1175-9 CrossRefGoogle Scholar
  27. 27.
    Kassa T, Chhibber S (2012) Thermal treatment of the bacteriophage lysate of Klebsiella pneumoniae b5055 as a step for the purification of capsular depolymerase enzyme. J Virol Methods 179(1):135–141.  https://doi.org/10.1016/j.jviromet.2011.10.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Jun JW et al (2013) Characterization and complete genome sequence of the Shigella bacteriophage psf-1. Res Microbiol 164(10):979–986.  https://doi.org/10.1016/j.resmic.2013.08.007 CrossRefPubMedGoogle Scholar
  29. 29.
    Brussow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39(2):213–222CrossRefGoogle Scholar
  30. 30.
    Eppler K et al (1991) Nucleotide sequence of the bacteriophage p22 genes required for DNA packaging. Virology 183(2):519–538CrossRefGoogle Scholar
  31. 31.
    Kropinski AM et al (2013) The host-range, genomics and proteomics of Escherichia coli, o157:h7 bacteriophage rv5. Virol J 10(1):1–12.  https://doi.org/10.1186/1743-422X-10-76 CrossRefGoogle Scholar
  32. 32.
    Gong Z et al (2017) Isolation and complete genome sequence of a novel Pseudoalteromonas, phage ph357 from the Yangtze river estuary. Curr Microbiol 74(7):1–8.  https://doi.org/10.1007/s00284-017-1244-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
  3. 3.Key Lab of Polar Oceanography and Global Ocean ChangeOcean University of ChinaQingdaoChina

Personalised recommendations