Pigments from Soil Bacteria and Their Therapeutic Properties: A Mini Review

  • Roqayya Mumtaz
  • Samina Bashir
  • Muhammad Numan
  • Zabta Khan Shinwari
  • Muhammad Ali
Review Article


Advancement in research on dyes obtained from natural sources e.g., plants, animals, insects and micro-organisms is widening the application of natural dyes in various fields. The natural dyes substituted their synthetic analogs at the beginning of twentieth century due to their improved quality, value, ease of production, ease of dyeing and some other factors. This era of dominance ended soon when toxic effects of synthetic dyes were reported. In the last few decades, pigments from micro-organisms especially soil derived bacteria is replacing dyes from other natural sources because of the increasing demand for safe, non-toxic, and biodegradable natural product. Apart from application in agriculture practices, cosmetics, textile, food and paper industries, bacterial pigments have additional biological activities e.g., anti-tumor, anti-fungal, anti-bacterial, immunosuppressive anti-viral, and many more which make them a potential candidate for pharmaceutical industry. Optimization of culture conditions and fermentation medium is the key strategies for large scale production of these natural dyes. An effort has been done to give an overview of pigments obtained from bacteria of soil origin, their dominance over dyes from other sources (natural and synthetic) and applications in the medical world in the underlying study.


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Dufossé L (2009) Pigments, microbial. Elsevier, New YorkCrossRefGoogle Scholar
  2. 2.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740CrossRefPubMedGoogle Scholar
  3. 3.
    Sobin B, Stahly GL (1942) The isolation and absorption spectrum maxima of bacterial carotenoid pigments. J Bacteriol 44(3):265PubMedPubMedCentralGoogle Scholar
  4. 4.
    Cristea D, Vilarem G (2006) Improving light fastness of natural dyes on cotton yarn. Dyes Pigment 70(3):238–245CrossRefGoogle Scholar
  5. 5.
    Rajagopal L, Sundari CS, Balasubramanian D, Sonti RV (1997) The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett 415(2):125–128. CrossRefPubMedGoogle Scholar
  6. 6.
    Shahidi F, Kamil YJ (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol 12(12):435–464CrossRefGoogle Scholar
  7. 7.
    Mahler B, Personné J-C, Lods G, Drogue C (2000) Transport of free and particulate-associated bacteria in karst. J Hydrol 238(3):179–193CrossRefGoogle Scholar
  8. 8.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years⊥. J Nat Prod 70(3):461–477CrossRefPubMedGoogle Scholar
  9. 9.
    Gohel M, Jogani PD (2005) A review of co-processed directly compressible excipients. J Pharm Pharm Sci 8(1):76–93PubMedGoogle Scholar
  10. 10.
    Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079CrossRefGoogle Scholar
  11. 11.
    Pourbabaee A, Malekzadeh F, Sarbolouki M, Najafi F (2006) Aerobic decolorization and detoxification of a disperse dye in textile effluent by a new isolate of Bacillus sp. Biotechnol Bioeng 93(4):631–635CrossRefPubMedGoogle Scholar
  12. 12.
    Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krishnamurthy K, Siva R, Senthil T (2002) Natural dye-yielding plants of Shervaroy Hills of Eastern Ghats. In: Proceedings of National Seminar on the Conservation of the Eastern Ghats, Environment Protection Training and Research Institute, Hyderabad, pp 24–26Google Scholar
  14. 14.
    Cross B, Edinberry M, Turner W (1972) Pigments of Gnomonia erythrostoma. Part I. The structures of erythrostominone, deoxyerythrostominone, and deoxyerythrostominol. J Chem Soc Perkin Trans 1:380–390CrossRefGoogle Scholar
  15. 15.
    Mizukami H, Konoshima M, Tabata M (1978) Variation in pigment production in Lithospermum erythrorhizon callus cultures. Phytochemistry 17(1):95–97CrossRefGoogle Scholar
  16. 16.
    Kim C-H, Kim S-W, Hong S-I (1999) An integrated fermentation–separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem 35(5):485–490CrossRefGoogle Scholar
  17. 17.
    Parekh S, Vinci V, Strobel R (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54(3):287–301CrossRefPubMedGoogle Scholar
  18. 18.
    Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5(3):49–61Google Scholar
  19. 19.
    Räisänen R, Nousiainen P, Hynninen PH (2002) Dermorubin and 5-chlorodermorubin natural anthraquinone carboxylic acids as dyes for wool. Text Res J 72(11):973–976CrossRefGoogle Scholar
  20. 20.
    Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles-a review. Text Res J 80(16):1721–1737CrossRefGoogle Scholar
  21. 21.
    Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13(1):12CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen D, Han Y, Gu Z (2006) Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem 41(8):1773–1778CrossRefGoogle Scholar
  23. 23.
    Bhosale P, Bernstein PS (2004) β-Carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. J Ind Microbiol Biotechnol 31(12):565–571CrossRefPubMedGoogle Scholar
  24. 24.
    Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–323Google Scholar
  25. 25.
    Silva C, Cabral J, Van Keulen F (2004) Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett 26(3):257–262CrossRefPubMedGoogle Scholar
  26. 26.
    Dahal RH, Kim J (2018) Dyadobacter flavus sp. nov. and Dyadobacter terricola sp. nov., two novel members of the family Cytophagaceae isolated from forest soil. Arch Microbiol. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang Q, Song Y, Choi L, Liu H, Wang G, Li M (2018) Deinococcus rufus sp. nov., isolated from soil near an iron factory. Int J Syst Evol Microbiol 68(5):1622–1626. CrossRefPubMedGoogle Scholar
  28. 28.
    Banik A, Pandya P, Patel B, Rathod C, Dangar M (2018) Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Sci Total Environ 630:231–242. CrossRefPubMedGoogle Scholar
  29. 29.
    Wagh P, Mane R (2017) Identification and characterization of extracellular red pigment producing Neisseria spp. isolated from soil sample. Int J Innov Knowl Concepts 5(5):23–25Google Scholar
  30. 30.
    Gahlout M, Prajapati H, Chauhan P, Patel N, Solanki D (2017) Isolation and screening of pyocyanin producing Pseudomonas spp. from soil. Int J Adv Res Biol Sci 4(4):147–152CrossRefGoogle Scholar
  31. 31.
    Huang Y, Wei Z, Danzeng W, Kim MC, Zhu G, Zhang Y, Liu Z, Peng F (2017) Sphingomonas antarctica sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 67(10):4064–4068CrossRefPubMedGoogle Scholar
  32. 32.
    Samrot AV, Rio AJ, Kumar SS, Samanvitha SK (2017) Bioprospecting studies of pigmenting Pseudomonas aeruginosa SU-1, Microvirga aerilata SU14 and Bacillus megaterium SU15 isolated from garden soil. Biocatal Agric Biotechnol 11:330–337Google Scholar
  33. 33.
    Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P, Staňková E, Sobotka R, Barták M, Busse H-J, Švec P (2017) Mucilaginibacter terrae sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 67(10):4002–4007CrossRefPubMedGoogle Scholar
  34. 34.
    Ordenes-Aenishanslins N, Anziani-Ostuni G, Vargas-Reyes M, Alarcon J, Tello A, Perez-Donoso JM (2016) Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. J Photochem Photobiol B 162:707–714. CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar BNV, Kampe B, Rosch P, Popp J (2015) Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy. The Analyst 140(13):4584–4593. CrossRefGoogle Scholar
  36. 36.
    Netzer R, Stafsnes MH, Andreassen T, Goksøyr A, Bruheim P, Brautaset T (2010) Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. J Bacteriol 192(21):5688–5699CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang L, Pan Y, Wang K, Zhang X, Zhang C, Zhang S, Fu X, Jiang J (2015) Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils. Int J Syst Evolut Microbiol 65(3):1022–1030CrossRefGoogle Scholar
  38. 38.
    Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from northeastern Poland. PLoS ONE 10(4):e0125428. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Qin Z, Wang X, Rateb ME, Ass’ad LA, Jaspars M, Deng Z, Yu Y, Deng H (2014) Disruption of a methyltransferase gene in actinomycin G gene cluster in Streptomyces iakyrus increases the production of phenazinomycin. FEMS Microbiol Lett 352(1):62–68. CrossRefPubMedGoogle Scholar
  40. 40.
    Young C-C, Kämpfer P, Shen F-T, Lai W-A, Arun A (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55(1):423–426CrossRefPubMedGoogle Scholar
  41. 41.
    Venil CK, Nordin N, Zakaria ZA, Ahmad WA (2014) Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 64(Pt 9):3153–3159. CrossRefPubMedGoogle Scholar
  42. 42.
    Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M, Vasiljevic B, Nikodinovic-Runic J (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96(5):1217–1231. CrossRefPubMedGoogle Scholar
  43. 43.
    Li Z, Zhu H (2012) Chryseobacterium vietnamense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 62(Pt 4):827–831. CrossRefPubMedGoogle Scholar
  44. 44.
    Lee HJ, Han SI, Whang KS (2012) Streptomyces gramineus sp. nov., an antibiotic-producing actinobacterium isolated from bamboo (Sasa borealis) rhizosphere soil. Int J Syst Evol Microbiol 62(Pt 4):856–859. CrossRefPubMedGoogle Scholar
  45. 45.
    Banerjee D, Chatterjee S, Banerjee UC, Guha AK, Ray L (2011) Green pigment from Bacillus cereus M(1)(16) (MTCC 5521): production parameters and antibacterial activity. Appl Biochem Biotechnol 164(6):767–779. CrossRefPubMedGoogle Scholar
  46. 46.
    Han AR, Park JW, Lee MK, Ban YH, Yoo YJ, Kim EJ, Kim E, Kim BG, Sohng JK, Yoon YJ (2011) Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl Environ Microbiol 77(14):4912–4923. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhu H-h, Guo J, Yao Q, Yang S-z, Deng M-r, Li T-h (2011) Streptomyces caeruleatus sp. nov., with dark blue diffusible pigment. Int J Syst Evolut Microbiol 61(3):507–511CrossRefGoogle Scholar
  48. 48.
    Selvameenal L, Radhakrishnan M, Balagurunathan R (2009) Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian J Pharm Sci 71(5):499–504. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Niraula NP, Kim SH, Sohng JK, Kim ES (2010) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 87(4):1187–1194. CrossRefPubMedGoogle Scholar
  50. 50.
    Charkoudian LK, Fitzgerald JT, Khosla C, Champlin A (2010) In living color: bacterial pigments as an untapped resource in the classroom and beyond. PLoS Biol 8(10):e1000510CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu M, Peng F, Wang Y, Zhang K, Chen G, Fang C (2009) Kineococcus xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evolut Microbiol 59(5):1090–1093CrossRefGoogle Scholar
  52. 52.
    Lu Y, Wang L, Xue Y, Zhang C, Xing X-H, Lou K, Zhang Z, Li Y, Zhang G, Bi J (2009) Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem Eng J 43(2):135–141CrossRefGoogle Scholar
  53. 53.
    Zhu H-h, Guo J, Yao Q, Yang S-z, Deng M-r, Hanh VT, Ryan MJ (2007) Streptomyces vietnamensis sp. nov., a streptomycete with violet–blue diffusible pigment isolated from soil in Vietnam. Int J Syst Evolut Microbiol 57(8):1770–1774CrossRefGoogle Scholar
  54. 54.
    Boudjella H, Bouti K, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2007) Isolation and partial characterization of pigment-like antibiotics produced by a new strain of Streptosporangium isolated from an Algerian soil. J Appl Microbiol 103(1):228–236CrossRefPubMedGoogle Scholar
  55. 55.
    Richard C (1993) Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions. Bulletin de la Societe de pathologie exotique (1990) 86(3):169–173Google Scholar
  56. 56.
    Andrighetti-Fröhner C, Antonio R, Creczynski-Pasa T, Barardi C, Simões C (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Memórias do Instituto Oswaldo Cruz 98(6):843–848CrossRefPubMedGoogle Scholar
  57. 57.
    Magyarosy A, Ho JZ, Rapoport H, Dawson S, Hancock J, Keasling JD (2002) Chlorxanthomycin, a fluorescent, chlorinated, pentacyclic pyrene from a Bacillus sp. Appl Environ Microbiol 68(8):4095–4101CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G (2001) Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Arch Microbiol 176(3):217–223CrossRefPubMedGoogle Scholar
  60. 60.
    de Miguel T, Sieiro C, Poza M, Villa TG (2001) Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J Agric Food Chem 49(3):1200–1202CrossRefPubMedGoogle Scholar
  61. 61.
    Guyomarc’h F, Binet A, Dufossé L (2000) Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotechnol 24(1):64–70CrossRefGoogle Scholar
  62. 62.
    Teruel MA, Gontier E, Bienaime C, Saucedo JN, Barbotin J-N (1997) Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microb Technol 21(5):314–320CrossRefGoogle Scholar
  63. 63.
    Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177(22):6575–6584CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yamane M, Williams A, Barry B (1995) Terpene penetration enhancers in propylene glycol/water co-solvent systems: effectiveness and mechanism of action. J Pharm Pharmacol 47(12A):978–989CrossRefPubMedGoogle Scholar
  66. 66.
    Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8(2):87–91CrossRefGoogle Scholar
  67. 67.
    Palleroni N, Reichelt K, Mueller D, Epps R, Tabenkin B, Bull D, Schüep W, Berger J (1978) Production of a novel red pigment, rubrolone, by Streptomyces echinoruber sp. nov. J Antibiot 31(12):1218–1225CrossRefPubMedGoogle Scholar
  68. 68.
    Giuffrida D, Sutthiwong N, Dugo P, Donato P, Cacciola F, Girard-Valenciennes E, Le Mao Y, Monnet C, Fouillaud M, Caro Y (2016) Characterisation of the C50 carotenoids produced by strains of the cheese-ripening bacterium Arthrobacter arilaitensis. Int Dairy J 55:10–16CrossRefGoogle Scholar
  69. 69.
    Cooney J, Marks H, Smith AM (1966) Isolation and identification of canthaxanthin from Micrococcus roseus. J Bacteriol 92(2):342–345PubMedPubMedCentralGoogle Scholar
  70. 70.
    Darken MA, Berenson H, Shirk RJ, Sjolander NO (1960) Production of tetracycline by Streptomyces aureofaciens in synthetic media. Appl Microbiol 8(1):46–51PubMedPubMedCentralGoogle Scholar
  71. 71.
    Virgilio A, Hengeller C (1960) Production of tetracycline by Streptomyces psammoticus. Il Farmaco; edizione scientifica 15:164–174PubMedGoogle Scholar
  72. 72.
    Numan M, Bashir S, Mumtaz R, Tayyab S, Rehman NU, Khan AL, Shinwari ZK, Al-Harrasi A (2018) Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech 8(4):207CrossRefPubMedGoogle Scholar
  73. 73.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA: Cancer J Clin 66(1):7–30Google Scholar
  74. 74.
    Zhang J, Shen Y, Liu J, Wei D (2005) Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochem Pharmacol 69(3):407–414CrossRefPubMedGoogle Scholar
  75. 75.
    Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29(2):223–229CrossRefPubMedGoogle Scholar
  76. 76.
    Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104(5):1459–1464CrossRefPubMedGoogle Scholar
  77. 77.
    Leon L, Miranda C, De Souza A, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48(3):449–450CrossRefPubMedGoogle Scholar
  78. 78.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn S, Birbeck A, Blyth G, Bolliger F, Boufous I, Bucello S, Burch C, Bin Abdulhak M, et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128CrossRefPubMedGoogle Scholar
  79. 79.
    Oaks SC Jr, Shope RE, Lederberg J (1992) Emerging infections: microbial threats to health in the United States. National Academies Press, Washington, DCGoogle Scholar
  80. 80.
    Marston HD, Folkers GK, Morens DM, Fauci AS (2014) Emerging viral diseases: confronting threats with new technologies. Sci Transl Med 6(253):253ps210–253ps210CrossRefGoogle Scholar
  81. 81.
    Dhanasekaran D, Thajuddin N, Panneerselvam A (2015) Antimicrobials: synthetic and natural compounds. CRC Press, Boca RatonCrossRefGoogle Scholar
  82. 82.
    Heer K, Sharma S (2017) Microbial pigments as a natural color: a review. Int J Pharm Sci Res 8(5):1913Google Scholar
  83. 83.
    Agematu H, Suzuki K, Tsuya H (2011) Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil. Biosci Biotechnol Biochem 75(10):2008–2010CrossRefPubMedGoogle Scholar
  84. 84.
    Dixon DM, McNeil MM, Cohen ML, Gellin BG, La Montagne JR (1996) Fungal infections: a growing threat. Public Health Rep 111(3):226PubMedPubMedCentralGoogle Scholar
  85. 85.
    Moss M (2002) Bacterial pigments. Microbiologist 3(4):10–12Google Scholar
  86. 86.
    Giri AV, Anandkumar N, Muthukumaran G, Pennathur G (2004) A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kang J-S, Lee M-H (2009) Overview of therapeutic drug monitoring. Korean J Intern Med 24(1):1CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Qarshi UniversityLahorePakistan
  3. 3.Department of Biotechnology, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations