Advertisement

Clostridium difficile, the Difficult “Kloster” Fuelled by Antibiotics

  • Leon M. T. Dicks
  • Lasse S. Mikkelsen
  • Erik Brandsborg
  • Harold Marcotte
Review Article

Abstract

Clostridium difficile is normally present in low numbers in a healthy adult gastro-intestinal tract (GIT). Drastic changes in the microbial population, e.g., dysbiosis caused by extensive treatment with antibiotics, stimulates the growth of resistant strains and the onset of C. difficile infection (CDI). Symptoms of infection varies from mild diarrhea to colitis (associated with dehydration and bleeding), pseudomembranous colitis with yellow ulcerations in the mucosa of the colon, to fulminant colitis (perforation of the gut membrane), and multiple organ failure. Inflamed epithelial cells and damaged mucosal tissue predisposes the colon to other opportunistic pathogens such as Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp., and Salmonella spp. This may lead to small intestinal bacterial overgrowth (SIBO), sepsis, toxic megacolon, and even colorectal cancer. Many stains of C. difficile are resistant to metronidazole and vancomycin. Vaccination may be an answer to CDI, but requires more research. Success in treatment with probiotics depends on the strains used. Oral or rectal fecal transplants are partly effective, as spores in the small intestine may germinate and colonize the colon. The effect of antibiotics on C. difficile and commensal gut microbiota is summarized and changes in gut physiology are discussed. The need to search for non-antibiotic methods in the treatment of CDI and C. difficile-associated disease (CDAD) is emphasized.

Notes

Acknowledgements

The authors thank the other Bifodan Scientific Advisory Board members (Susanne Andersen Bækgaard, and Gunnar Brøndstad) for fruitful discussions at our 2018 meeting in Hundested, Denmark.

Compliance with Ethical Standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. 1.
    Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP (2013) Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol 51:2884–2892PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Antunes LC, Han J, Ferreira RB, Lolic P, Borchers CH, Finlay BB (2011) The effect of antibiotic treatment on the intestinal metabolome. Antimicrob Agents Chemother 55:1494:1503PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bäckhed F, Ley R, Sonnenburg J, Peterson D, Gordon J (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRefGoogle Scholar
  4. 4.
    Barc MC, Bourlioux F, Rigottier-Gois L, Charrin-Sarnel C, Janoir C, Boureau H, Doré J, Collignon A (2004) Effect of amoxicillin-clavulanic acid on human fecal flora in a gnotobiotic mouse model assessed with fluorescence hybridization using group-specific 16S rRNA probes in combination with flow cytometry. Antimicrob Agents Chemother 48(4):1365–1368PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bartlett JG (1996) Management of Clostridium difficile infection and other ntibiotic-associated diarrhoeas. Eur J Gastroenterol Hepatol 8:1054–1061PubMedCrossRefGoogle Scholar
  6. 6.
    Bartlett JG (2002) Clinical practice: antibiotic-associated diarrhea. N Engl J Med 346:334–339PubMedCrossRefGoogle Scholar
  7. 7.
    Beaugerie L, Flahault A, Barbut F, Atlan P, Lalande V, Cousin P, Cadilhac M, Petit JC (2003) Antibiotic-associated diarrhoea and Clostridium difficile in the community. Aliment Pharmacol Ther 17:905–912PubMedCrossRefGoogle Scholar
  8. 8.
    Beaugerie L, Petit J-C (2004) Antibiotic-associated diarrhea. Best Pract Res Clin Gastroenterol 18(2):337–352PubMedCrossRefGoogle Scholar
  9. 9.
    Bond JH, Levitt MD (1976) Fate of soluble carbohydrates in the colon of rats and man. J Clin Investig 57:1158–1164PubMedCrossRefGoogle Scholar
  10. 10.
    Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80:62–73PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Buts JP, De KN, De RL (1994) Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr Res 36:522–527PubMedCrossRefGoogle Scholar
  12. 12.
    Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31(5):431–455PubMedCrossRefGoogle Scholar
  14. 14.
    Corthier G, Dubos F, Raibaud P (1985) Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Appl Environ Microbiol 49:250–252PubMedPubMedCentralGoogle Scholar
  15. 15.
    Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nature reviews Microbiol 11:95–105CrossRefGoogle Scholar
  16. 16.
    Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786CrossRefGoogle Scholar
  17. 17.
    Department of Health (2008) Clostridium difficile infection: how to deal with the problem. Available from: http://www.hpa.org.uk/web/HPAwebFile/ HPAweb_C/1232006607827
  18. 18.
    Dicks LMT, Botha M, Loos B, Smith C (2015) Adhesion of Lactobacillus reuteri strain Lr1 to equine epithelial cells and competitive exclusion of Clostridium difficile from the gastro-intestinal tract of horses. Ann Microbiol 65:1087–1096CrossRefGoogle Scholar
  19. 19.
    Dobson G, Hickey C, Trinder J (2003) Clostridium difficile colitis causing toxic megacolon, severe sepsis and multiple organ dysfunction syndrome. Intensive Care Med 29:1030PubMedCrossRefGoogle Scholar
  20. 20.
    Durovic A, Widmer AF, Tschudin-Sutter S (2018) New insights into transmission of Clostridium difficile infection—narrative review. Clin Microbiol Infect.  https://doi.org/10.1016/j.cmi.2018.01.027 CrossRefPubMedGoogle Scholar
  21. 21.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL (2014) Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 16(6):770–777PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Floch MH, Madsen KK, Jenkins DJA, Guandalini S, Katz JA, Onderdonk A, Walker WA, Fedorak RN, Camilleri M (2006) Recommendations for probiotic use. J Clin Gastroenterol 40:275–278PubMedCrossRefGoogle Scholar
  26. 26.
    Freeman J, Fawley WN, Baines S, Wilcox M (2006) Measurement of toxin production by Clostridium difficile. Lancet 367:982–983PubMedCrossRefGoogle Scholar
  27. 27.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi F, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450PubMedCrossRefGoogle Scholar
  28. 28.
    Gerding DN, Johnson S, Peterson LR, Mulligan ME, Silva J Jr (1995) Clostridium difficile-associated diarrhea and colitis. Infect Control Hosp Epidemiol 16:459–477PubMedCrossRefGoogle Scholar
  29. 29.
    Goldenberg JZ, Yap C, Lytvyn L, Lo CKF, Beardsley J, Mertz D, Johnston BC (2017) Probiotics for the prevention of Clostridum difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006095.pub4 PubMedCrossRefGoogle Scholar
  30. 30.
    Gorbach SL, Chang T-W, Goldin B (1987) Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2:1519PubMedCrossRefGoogle Scholar
  31. 31.
    He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45(1):109–113PubMedCrossRefGoogle Scholar
  32. 32.
    Hennequin C, Janoir C, Barc MC, Collignon A, Karjalainen T (2003) Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiol 149:2779–2787CrossRefGoogle Scholar
  33. 33.
    Hennequin C, Porcheray F, Waligora-Dupriet A-J, Collignon A, Barc MC, Bourlioux P, Karjalainen T (2001) GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147:87–96PubMedCrossRefGoogle Scholar
  34. 34.
    Henrich TJ, Krakower D, Bitton A, Yokoe DS (2009) Clinical risk factors for severe Clostridium difficile–associated disease. Emerg Infect Dis 15(3):415–422PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hickson M (2011) Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Ther Adv Gastroenterol 4(3):185–197CrossRefGoogle Scholar
  36. 36.
    Hogenauer C, Hammer HF, Krejs GJ, Reisinger EC (1998) Mechanisms and management of antibiotic associated diarrhea. Clin Infect Dis 27:702–710PubMedCrossRefGoogle Scholar
  37. 37.
    Hu MY, Katchar K, Kyne L, Maroo S, Tummala S, Dreisbach V, Xu H, Leffler D, Kelly CP (2009) Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterol 136:1206–1214CrossRefGoogle Scholar
  38. 38.
    Issa I, Moucari R (2014) Probiotics for antibiotic-associated diarrhea: do we have a verdict? World J Gastroenterol 20(47):17788–17795PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Issa M, Vijayapal A, Graham MB, Beaulieu DB, Otterson MF, Lundeen S, Skaros S, Weber LR, Komorowski RA, Knox JF, Emmons J, Bajaj JS, Binion DG (2007) Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 5:345–351PubMedCrossRefGoogle Scholar
  40. 40.
    Jangi S, Lamont JT (2010) Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr 51:2–7PubMedCrossRefGoogle Scholar
  41. 41.
    Jank T, Giesemann T, Aktories K (2007) Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiol 17(4):15R–19RCrossRefGoogle Scholar
  42. 42.
    Jefferson KK, Smith MF Jr, Bobak DA (1999) Roles of intracellular calcium and NF-kappa B in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. J Immunol 163:5183–5191PubMedGoogle Scholar
  43. 43.
    Jena PK, Trivedi D, Chaudhary H, Sahoo TK, Seshadri S (2013) Bacteriocin PJ4 active against enteric pathogen produced by Lactobacillus helveticus PJ4 isolated from gut microflora of wistar rat (Rattus norvegicus): partial purification and characterization of bacteriocin. Appl Biochem Biotechnol 169(7):2088–2100PubMedCrossRefGoogle Scholar
  44. 44.
    Just I, Selzer J, Wilm M, Mann M, Aktories K (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375(6531):500–503PubMedCrossRefGoogle Scholar
  45. 45.
    Kariv R, Navaneethan U, Lopez R, Shen B (2011) Impact of Clostridium difficile infection in patients with ulcerative colitis. J Crohn’s Colitis 5:34–40CrossRefGoogle Scholar
  46. 46.
    Karlsson S, Burman LG, Åkerlund T (1999) Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiol 145:1683–1693CrossRefGoogle Scholar
  47. 47.
    Karlsson S, Lindberg A, Norin E, Burman LG, Akerlund T (2000) Toxins, butyric acid, and other shortchain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68:5881–5888PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kassam Z, Lee CH, Yuan Y, Hunt RH (2013) Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108:500–508PubMedCrossRefGoogle Scholar
  49. 49.
    Kazanowski M, Smolarek S, Kinnarney F, Grzebieniak Z (2014) Clostridium difficile: epidemiology, diagnostic and therapeutic possibilities—systematic review. Tech Coloproctol 18:223–232PubMedCrossRefGoogle Scholar
  50. 50.
    Kelly CP, LaMont JT (1998) Clostridium difficile infection. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Med 49:375–390PubMedCrossRefGoogle Scholar
  51. 51.
    Kim JM, Lee JY, Yoon JM, Oh Y-K, Youn J, Kim Y-J (2006) NF-κB activation pathway is essential for the chemokine expression in intestinal epithelial cells stimulated with Clostridium difficile toxin A. Scandinavian J Immunol 63:453–460CrossRefGoogle Scholar
  52. 52.
    Kobayashi T (1983) Studies on Clostridium difficile and antimicrobial associated diarrhoea or colitis. Jpn J Antibiot 36:464–476 (in Japanese)PubMedGoogle Scholar
  53. 53.
    Koike T, Kuzuya M, Asai T, Kanda S, Cheng XW, Watanabe K, Banno Y, Nozawa Y, Iguchi A (2000) Activation of MMP-2 by Clostridium difficile toxin B in bovine smooth muscle cells. Biochem Biophys Res Commun 277(1):43–46PubMedCrossRefGoogle Scholar
  54. 54.
    Krivan HC, Clark GF, Smith DF, Wilkins TD (1986) Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1-3Gal beta 1-4GlcNAc. Infect Immun 53(3):573–581PubMedPubMedCentralGoogle Scholar
  55. 55.
    Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713PubMedCrossRefGoogle Scholar
  56. 56.
    Lau CSM, Chamberlain RS (2016) Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 9:27–37PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiober F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill J, Dougan G (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8:e1002995PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Leffler DA, Lamont JT (2009) Treatment of Clostridium difficile-associated disease. Gastroenterol 136:1899–1912CrossRefGoogle Scholar
  59. 59.
    Lessa FC, Gould CV, McDonald LC (2012) Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 55(S2):S65–S70PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834PubMedCrossRefGoogle Scholar
  61. 61.
    Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefGoogle Scholar
  62. 62.
    Littman DR, Pamer EG (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276:G941–G950PubMedGoogle Scholar
  64. 64.
    Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, Simone CD (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterol 121:580–591CrossRefGoogle Scholar
  65. 65.
    Marcille F, Gomez A, Joubert P, Ladiré M, Veau G, Clara A, Gavini F, Willems A, Fons M (2002) Distribution of genes encoding the trypsin-dependent antibiotic ruminococcin A among bacteria isolated from human fecal microbiota. Appl Environ Microbiol 68:3424–3431PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mazmanian S, Liu C, Tzianabos A, Kasper D (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118PubMedCrossRefGoogle Scholar
  67. 67.
    Miller B, Chen L, Sexton D, Anderson D (2011) Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infect Control Hosp Epidemiol 32:387–390PubMedCrossRefGoogle Scholar
  68. 68.
    Miller CB, Dellon E, Isaacs K, Gangarosa L (2010) Fecal bacteriotherapy via colonoscopy as rescue therapy for refractory and recurrent Clostridium difficile-associated diarrhea. Am J Gastroenterol 05:S323Google Scholar
  69. 69.
    Miyajima F, Roberts P, Swale A, Price V, Jones M, Horan M, Beeching N, Brazier J, Parry C, Pendleton N, Pirmohammed M (2011) Characterisation and carriage ratio of Clostridium difficile strains isolated from a community-dwelling elderly population in the United Kingdom. PLoS ONE 6(8):e22804PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nakamura S, Nakashio S, Yamakawa K, Tanabe N, Nishida S (1982) Carbohydrate fermentation by Clostridium difficile. Microbiol Immunol 26:107–111PubMedCrossRefGoogle Scholar
  71. 71.
    Navaneethan U, Venkatesh PGK, Shen B (2010) Clostridium difficile infection and inflammatory bowel disease: understanding the evolving relationship. World J Gastroenterol 16(39):4892–4904PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Persky SE, Brandt LJ (2000) Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am J Gastroenterol 95:3283–3285PubMedGoogle Scholar
  73. 73.
    Pillai A, Nelson R (2008) Probiotics for treatment of Clostridium difficile-associated colitis in adults. Cochrane Database Syst Rev 1:CD004611Google Scholar
  74. 74.
    Plummer S, Weaver MA, Harris JC, Dee P, Hunter J (2004) Clostridium difficile pilot study: effects of probiotic supplementation on the incidence of C. difficile diarrhea. Int Microbiol 7:59–62PubMedGoogle Scholar
  75. 75.
    Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, Kelly CP (2001) Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect Immun 69:2762–2765PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rea MC, Alemayehu D, Ross RP, Hill C (2013) Gut solutions to a gut problem: bacteriocins, probiotics and bacteriophage for control of Clostridium difficile infection. J Med Microbiol 62:1369–1378PubMedCrossRefGoogle Scholar
  77. 77.
    Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB (2012) Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 80:3786–3794PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rohlke F, Surawicz CM, Stollman N (2010) Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. J Clin Gastroenterol 44:567–570PubMedCrossRefGoogle Scholar
  79. 79.
    Rojo D, Méndez-García C, Anna Raczkowska B, Bargiela R, Moya A, Ferrer M, Barbas C (2017) Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 41:453–478PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ross CL, Spinler JK, Savidge TC (2016) Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe 41:37–43PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rousseau C, Poilane I, De Pontual L, Maherault AC, Le Monnier A, Collignon A (2012) Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis 55:1209–1215PubMedCrossRefGoogle Scholar
  82. 82.
    Sayin S, Wahlström A, Felin J, Jäntti S, Marschall H, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235PubMedCrossRefGoogle Scholar
  83. 83.
    Schwann C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt W-F, Wehland J, Aktories K (2009) Clostridium difficile CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626CrossRefGoogle Scholar
  84. 84.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573PubMedCrossRefGoogle Scholar
  85. 85.
    Song Y, Garg S, Girotra M, Maddox C, von Rosenvinge EC, Dutta A, Dutta S, Fricke WF (2013) Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS ONE 8(11):e81330PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sorg JA, Sonenshein AL (2008) Bile salts and glycine as co-germinants for Clostridium difficile spores. J Bacteriol 190:2505–2512PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sorg JA, Sonenshein AL (2009) Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191:1115–1117PubMedCrossRefGoogle Scholar
  88. 88.
    Staley C, Weingarden AR, Khoruts A, Sadowsky MJ (2017) Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 101:47–64PubMedCrossRefGoogle Scholar
  89. 89.
    Sykesa E, McDonaldb P, Flanaganc PK (2012) Corticosteroids in the treatment of pseudomembranous colitis: a report of 3 cases. Gastroenterol Res 5(5):211–214Google Scholar
  90. 90.
    Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis in inflammatory bowel disease. Gut 53:1–4PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tan KS, Wee BY, Song KP (2001) Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol 50:613–619PubMedCrossRefGoogle Scholar
  92. 92.
    Tasteyre A, Barc MC, Collignon A, Boureau H, Karjalainen T (2001) Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 69:7937–7940PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Theriot CM, Bowman AA, Young VB (2016) Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. MSphere 1(1):e00045–e00015PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB (2014) Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5:3114PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Theriot CM, Young VB (2015) Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol 69:445–461PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Thomson AB, Sauve MD, Kassam N, Kamitakahara H (2010) Safety of the long-term use of proton pump inhibitors. World J Gastroenterol 16(19):2323–2330PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tsukahara T, Ushida K (2001) Succinate accumulation in pig large intestine during antibiotic-associated diarrhea and the constitution of succinate-producing flora. J Gen Appl Microbiol 48:143–154CrossRefGoogle Scholar
  98. 98.
    Van Baarlen P, Wells JM, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34(5):208–215PubMedCrossRefGoogle Scholar
  99. 99.
    Viscidi R, Laughon BE, Yolken R, Bo-Linn P, Moench T, Ryder RW, Bartlett JG (1983) Serum antibody response to toxins A and B of Clostridium difficile.. J Infect Dis 148:93–100PubMedCrossRefGoogle Scholar
  100. 100.
    Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Waligora AJ, Hennequin C, Mullany P, Bourlioux P, Collignon A, Karjalainen T (2001) Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 69:2144–2153PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Warny M, Kelly CP (2003) Pathogenicity of Clostridium difficile toxins. In: Hecht GA (ed) Microbial pathogenesis and the intestinal epithelial cell. ASM Press, Washington, DC, pp 503–524CrossRefGoogle Scholar
  103. 103.
    Wenisch C, Parschalk B, Hasenhündl M, Hirschl AM, GraningerW (1996) Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 22(5):813–818PubMedCrossRefGoogle Scholar
  104. 104.
    Wilson KH, Kennedy MJ, Fekety FR (1982) Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 15:443–446PubMedPubMedCentralGoogle Scholar
  105. 105.
    World Gastroenterology Organization (2008) Probiotics and prebiotics: practice guideline. Available at: http://www.worldgastroenterology.org/ probiotics-prebiotics.html
  106. 106.
    Zar FA, Bakkanagari SR, Moorthi KM, Davis MB (2007) A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 45:302–307PubMedCrossRefGoogle Scholar
  107. 107.
    Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, Keohane C, Denham CR, Bates D (2013) Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 173:2039–2046PubMedCrossRefGoogle Scholar
  108. 108.
    Zoetendal E, Rajilic-Stojanovic M, de Vos W (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605–1615PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leon M. T. Dicks
    • 1
  • Lasse S. Mikkelsen
    • 2
  • Erik Brandsborg
    • 2
  • Harold Marcotte
    • 3
  1. 1.Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.Bifodan A/SHundestedDenmark
  3. 3.Department of Laboratory MedicineKarolinska Institutet at Karolinska University HospitalStockholmSweden

Personalised recommendations