Current Microbiology

, Volume 75, Issue 10, pp 1391–1400 | Cite as

A Dual-Replicon Shuttle Vector System for Heterologous Gene Expression in a Broad Range of Gram-Positive and Gram-Negative Bacteria

  • Mingxi Hua
  • Jingjing Guo
  • Min Li
  • Chen Chen
  • Yuanyuan Zhang
  • Chuan Song
  • Dong Jiang
  • Pengcheng DuEmail author
  • Hui ZengEmail author


Origin of replication (ori in theta-replicating plasmids or dso in rolling circle replicating plasmids) initiates plasmid replication in a broad range of bacteria. These two kinds of plasmids were both identified in Streptococcus, a genus composed of both human commensal bacteria and pathogens with the ability to cause severe community-acquired infections, including meningitides, septicemia, and respiratory tract diseases. Given the important roles of Streptococcus in the exchange of genetic elements with other symbiotic microbes, the genotypes and phenotypes of both Streptococcus spp. and other symbiotic species could be changed during colonization of the host. Therefore, an improved plasmid system is required to study the functional, complicated, and changeable genomes of Streptococcus. In this study, a dual-replicon shuttle vector system named pDRE was constructed to achieve heterologous gene expression. The vector system contained theta replicon for Escherichia coli. The origin of rolling circle replicon was synthesized according to pMV158 in Gram-positive bacteria. By measuring the products of inserted genes at multiple cloning sites, the ability of this vector system in the replication and expression of heterologous genes was assessed in four Streptococcus and three other Gram-positive bacteria: Bacillus subtilis, Lactococcus lactis, and Staphylococcus aureus. The results showed that the newly constructed vector could simultaneously replicate and express heterologous genes in a broad range of Gram-positive and Gram-negative bacteria, thus providing a potentially powerful genetic tool for further functional analysis.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 81702038 and 81571956).

Author Contributions

HZ and PD conceived the project. HZ, CC, PD, and MH designed the study. MH, JG, ML, YZ, DJ, and CS performed the experiments. HZ, CC, PD, and MH wrote the paper. All authors have discussed the results, commented on the manuscript, and have given final approval for the submitted version.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2018_1535_MOESM1_ESM.docx (445 kb)
Supplementary material 1 (DOCX 444 KB)


  1. 1.
    Bode M, Khor S, Ye H, Li M-H, Ying JY (2009) TmPrime: fast, flexible oligonucleotide design software for gene synthesis. Nucleic Acids Res 37(suppl_2):W214–W221CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Breiman RF, Davis JP, Facklam RR, Gray BM, Hoge CW, Kaplan EL, Mortimer EA, Schlievert PM, Schwartz B, Stevens DL (1993) Defining the group A streptococcal toxic shock syndrome: rationale and consensus definition. JAMA 269(3):390–391CrossRefGoogle Scholar
  3. 3.
    Bruand C, Le Chatelier E, Ehrlich SD, Janniere L (1993) A fourth class of theta-replicating plasmids: the pAM beta 1 family from Gram-positive bacteria. Proc Natl Acad Sci USA 90(24):11668–11672CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Y-YM, Shieh H-R, Lin C-T, Liang S-Y (2011) Properties and construction of plasmid pFW213, a shuttle vector with the oral Streptococcus origin of replication. Appl Environ Microbiol 77(12):3967–3974CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Datta S, Costantino N (2006) A set of recombineering plasmids for Gram-negative bacteria. Gene 379:109–115CrossRefPubMedGoogle Scholar
  6. 6.
    Del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62(2):434–464PubMedPubMedCentralGoogle Scholar
  7. 7.
    Efstratiou A, Lamagni T (2016) Epidemiology of Streptococcus pyogenes Google Scholar
  8. 8.
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343CrossRefPubMedGoogle Scholar
  9. 9.
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580CrossRefPubMedGoogle Scholar
  10. 10.
    Håvarstein LS (2010) Increasing competence in the genus Streptococcus. Mol Microbiol 78(3):541–544CrossRefPubMedGoogle Scholar
  11. 11.
    Hernández-Arriaga AM, Espinosa M, del Solar G (2012) Fitness of the pMV158 replicon in Streptococcus pneumoniae. Plasmid 67(2):162–166CrossRefPubMedGoogle Scholar
  12. 12.
    Jensen A, Valdórsson O, Frimodt-Møller N, Hollingshead S, Kilian M (2015) Commensal Streptococci serve as a reservoir for β-lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemther 59(6):3529–3540CrossRefGoogle Scholar
  13. 13.
    Khan SA (2005) Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53(2):126–136CrossRefPubMedGoogle Scholar
  14. 14.
    Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H (2014) Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. MBio 5(4):e01490–e01414CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    LeBlanc DJ, Lee LN, Abu-Al-Jaibat A (1992) Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28(2):130–145CrossRefPubMedGoogle Scholar
  16. 16.
    Lehtinen S, Blanquart F, Croucher NJ, Turner P, Lipsitch M, Fraser C (2017) Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc Natl Acad Sci USA 114(5):1075–1080CrossRefPubMedGoogle Scholar
  17. 17.
    Lilly J, Camps M (2015) Mechanisms of theta plasmid replication. Microbiol Spectr 3(1)Google Scholar
  18. 18.
    Lorenzo-Díaz F, Espinosa M (2009) Lagging-strand DNA replication origins are required for conjugal transfer of the promiscuous plasmid pMV158. J Bacteriol 191(3):720–727CrossRefPubMedGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc R Soc Lond B Biol Sci 276(1667):2521–2530CrossRefGoogle Scholar
  21. 21.
    Murray KD, Aronstein KA, de Leon JH (2007) Analysis of pMA67, a predicted rolling-circle replicating, mobilizable, tetracycline-resistance plasmid from the honey bee pathogen, Paenibacillus larvae. Plasmid 58(2):89–100CrossRefPubMedGoogle Scholar
  22. 22.
    Nieto C, de Palencia PF, López P, Espinosa M (2000) Construction of a tightly regulated plasmid vector for Streptococcus pneumoniae: controlled expression of the green fluorescent protein. Plasmid 43(3):205–213CrossRefPubMedGoogle Scholar
  23. 23.
    Nieto C, Espinosa M, Puyet A (1997) The maltose/maltodextrin regulon of Streptococcus pneumoniae differential promoter regulation by the transcriptional repressor MalR. J Biol Chem 272(49):30860–30865CrossRefPubMedGoogle Scholar
  24. 24.
    Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM, Highlander SK, Town CD, Burne RA, Stanhope MJ (2014) Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol Evol 6(4):741–753CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ruiz-Masó JA, López-Aguilar C, Nieto C, Sanz M, Burón P, Espinosa M, del Solar G (2012) Construction of a plasmid vector based on the pMV158 replicon for cloning and inducible gene expression in Streptococcus pneumoniae. Plasmid 67(1):53–59CrossRefPubMedGoogle Scholar
  26. 26.
    Ruiz-Masó JA, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, del Solar G (2015) Plasmid rolling-circle replication. In: Plasmids: biology and impact in biotechnology and discovery. American Society of Microbiology, pp 45–69Google Scholar
  27. 27.
    Sánchez C, Mayo B (2003) Sequence and analysis of pBM02, a novel RCR cryptic plasmid from Lactococcus lactis subsp. cremoris P8-2-47. Plasmid 49(2):118–129CrossRefPubMedGoogle Scholar
  28. 28.
    Shareck J, Choi Y, Lee B, Miguez CB (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol 24(4):155–208CrossRefPubMedGoogle Scholar
  29. 29.
    Spellerberg B, Brandt C (2015) Streptococcus. In: Manual of clinical microbiology, 11th edn. American Society of Microbiology, pp 383–402Google Scholar
  30. 30.
    Vélez JR, Cameron M, Rodríguez-Lecompte JC, Xia F, Heider LC, Saab M, McClure J, Sánchez J (2017) Whole-genome sequence analysis of antimicrobial resistance genes in Streptococcus uberis and Streptococcus dysgalactiae isolates from canadian Dairy herds. Front Vet Sci 4:63CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8(2):e57923CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Willems RJ, Hanage WP, Bessen DE, Feil EJ (2011) Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):872–900CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wong SS, Yuen K-Y (2012) Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg Microbes Infect 1(7):e2CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127(3):335–347CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mingxi Hua
    • 1
  • Jingjing Guo
    • 2
  • Min Li
    • 2
  • Chen Chen
    • 1
  • Yuanyuan Zhang
    • 1
  • Chuan Song
    • 1
  • Dong Jiang
    • 1
  • Pengcheng Du
    • 1
    Email author
  • Hui Zeng
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
  2. 2.Clinical Laboratory, Beijing Ditan HospitalCapital Medical UniversityBeijingChina

Personalised recommendations