Advertisement

Current Microbiology

, Volume 75, Issue 10, pp 1316–1323 | Cite as

Analysis of the Gut Microbial Diversity of Dairy Cows During Peak Lactation by PacBio Single-Molecule Real-Time (SMRT) Sequencing

  • Weicheng Li
  • Qiangchuan Hou
  • Yanjie Wang
  • Huimin Ma
  • Yahua Liu
  • Feiyan Zhao
  • Jing Li
  • Lai-yu Kwok
  • Jie Yu
  • Zhihong Sun
  • Tiansong SunEmail author
Article

Abstract

Background

The gut microbes of dairy cows are strongly associated with their health, but the relationship between milk production and the intestinal microbiota has seldom been studied. Thus, we explored the diversity of the intestinal microbiota during peak lactation of dairy cows.

Methods

The intestinal microbiota of nine dairy cows at peak lactation was evaluated using the Pacific Biosciences single-molecule real-time (PacBio SMRT) sequencing approach.

Results

A total of 32,670 high-quality 16S rRNA gene sequences were obtained, belonging to 12 phyla, 59 families, 107 genera, and 162 species. Firmicutes (83%) were the dominant phylum, while Bacteroides (6.16%) was the dominant genus. All samples showed a high microbial diversity, with numerous genera of short chain fatty acid (SCFA)-producers. The proportion of SCFA producers was relatively high in relation to the identified core intestinal microbiota. Moreover, the predicted functional metagenome was heavily involved in energy metabolism.

Conclusions

This study provided novel insights into the link between the dairy cow gut microbiota and milk production.

Notes

Acknowledgements

We would like to express our gratitude to Professor Heping Zhang for his support, particularly for providing facilities to perform this work. Never forget why you started, and your mission can be accomplished. Funding was provided by National Natural Science Foundation of China.

Author Contributions

TS and ZS designed the study. WL and JL collected samples. FZ and YL processed. HM and YW sequenced samples. WL and QH analyzed the data. WL, JY, and LK wrote the paper.

Funding

This research was supported by the Science and Technology Major Project of Inner Mongolia Autonomous Region.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

284_2018_1526_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 KB)
284_2018_1526_MOESM2_ESM.pdf (331 kb)
Supplementary material 2 (PDF 330 KB)
284_2018_1526_MOESM3_ESM.pdf (153 kb)
Supplementary material 3 (PDF 152 KB)
284_2018_1526_MOESM4_ESM.pdf (41 kb)
Supplementary material 4 (PDF 40 KB)
284_2018_1526_MOESM5_ESM.docx (13 kb)
Supplementary material 5 (DOCX 12 KB)

References

  1. 1.
    Godoyvitorino F, Goldfarb KC, Karaoz U, Leal S, Garciaamado MA et al. 2012. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 6:531–541CrossRefGoogle Scholar
  2. 2.
    Shabat SKB, Sasson G, Doronfaigenboim A, Durman T, Yaacoby S et al (2016) Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J 10(12):2958CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jr DJS (2010) Alternatives to conventional ileostomy—Mayo Clinic Proceedings. ISME J 4:1225–1235Google Scholar
  4. 4.
    Mayer M, Abenthum A, Matthes JM, Kleeberger D, Ege MJ et al (2012) Development and genetic influence of the rectal bacterial flora of newborn calves. Vet Microbiol 161:179CrossRefPubMedGoogle Scholar
  5. 5.
    Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC et al. 2009. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948Google Scholar
  6. 6.
    Kim WI, Wonil K, Liu SY, Kinyon JM, Yoon KJ (2010) Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J Vet Diagn Investig 22:509–517CrossRefGoogle Scholar
  7. 7.
    Jewell KA, Mccormick CA, Odt CL, Weimer PJ, Suen G (2015) Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl Environ Microbiol 81:4697–4710CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kohl KD, Weiss RB, Dale C, Dearing MD (2011) Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis 54:47CrossRefGoogle Scholar
  9. 9.
    Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C (2011) Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 8:36CrossRefPubMedGoogle Scholar
  10. 10.
    Durso LM, Harhay GP, Smith TP, Bono JL, Desantis TZ et al (2010) Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Environ Microbiol 76:4858CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7(6):1069CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sasson G, Benshabat SK, Seroussi E, Doronfaigenboim A, Shterzer N et al (2017) Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow’s capacity to harvest energy from its feed. MBio 8:e00703-e007017CrossRefGoogle Scholar
  13. 13.
    Plaizier JC, Li S, Tun HM, Khafipour E (2016) Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Front Microbiol 7:2128PubMedGoogle Scholar
  14. 14.
    Hou Q, Xu H, Zheng Y, Xi X, Kwok LY et al (2015) Evaluation of bacterial contamination in raw milk, ultra-high temperature milk and infant formula using single molecule, real-time sequencing technology. J Dairy Sci 98:8464–8472CrossRefPubMedGoogle Scholar
  15. 15.
    Toma I, Siegel MO, Keiser J, Yakovleva A, Kim A et al (2014) Single-molecule long-read 16S sequencing to characterize the lung microbiome from mechanically ventilated patients with suspected pneumonia. J Clin Microbiol 52:3913–3921CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sutton JD (1985) Digestion and absorption of energy substrates in the lactating cow. J Dairy Sci 68:3376–3393CrossRefGoogle Scholar
  17. 17.
    Gálfi P, Bokori J (1990) Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Vet Hung 38:3–17PubMedGoogle Scholar
  18. 18.
    Xu H, Huang W, Hou Q, Kwok LY et al. (2017) The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Sci Bull 62(11)767–774Google Scholar
  19. 19.
    Pimentel PG, Reis RB, Neiva JNM, Coelho SG, Pinto AP (2017) Yield and composition of milk from dairy cows fed diets containing cashew nuts. Rev Cienc Agron 48(4):700–707CrossRefGoogle Scholar
  20. 20.
    Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M et al (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87CrossRefPubMedGoogle Scholar
  21. 21.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266CrossRefPubMedGoogle Scholar
  23. 23.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cole JR, Chai B, Farris RJ, Wang Q, Kulamsyedmohideen AS et al (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:169–172CrossRefGoogle Scholar
  25. 25.
    Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Dan K et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jeon SJ, Cunha F, Vieiraneto A, Bicalho RC, Lima S et al (2017) Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome 5:109CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stein DR, Allen DT, Perry EB, Bruner JC, Gates KW et al (2006) Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction 1. J Dairy Sci 89:111–125CrossRefPubMedGoogle Scholar
  29. 29.
    Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G et al (2007) Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin Res 67:7–13CrossRefGoogle Scholar
  30. 30.
    Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR et al (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76:7482CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kong Y, Teather R, Forster R (2010) Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol Ecol 74:612–622CrossRefPubMedGoogle Scholar
  32. 32.
    Sadet-Bourgeteau S, Martin C, Morgavi DP (2010) Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets. Vet Microbiol 146:98–104CrossRefPubMedGoogle Scholar
  33. 33.
    Khafipour E, Li S, Plaizier JC, Krause DO (2009) Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 75:7115–7124CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang J, Guo Z, Xue Z, Sun Z, Zhang M et al (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9:1979–1990CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao L, Zhang F, Ding X, Wu G, Lam YY et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156CrossRefPubMedGoogle Scholar
  36. 36.
    Anderson KL (1995) Biochemical analysis of starch degradation by Ruminobacter amylophilus 70. Appl Environ Microbiol 61:1488PubMedPubMedCentralGoogle Scholar
  37. 37.
    Qiao J, Kwok L, Zhang J, Gao P, Zheng Y et al (2015) Reduction of Lactobacillus in the milks of cows with subclinical mastitis. Benef Microbes 6:1–6CrossRefGoogle Scholar
  38. 38.
    Chilliard Y, Ferlay A, Mansbridge RM, Doreau M, Agabriel J, Givens I (2000) Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Annales De Zootech 49:181–205CrossRefGoogle Scholar
  39. 39.
    de Oliveira MN, Jewell KA, Freitas FS, Benjamin LA, Tótola MR et al (2013) Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol 164:307–314CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weicheng Li
    • 1
  • Qiangchuan Hou
    • 1
  • Yanjie Wang
    • 1
  • Huimin Ma
    • 1
  • Yahua Liu
    • 1
  • Feiyan Zhao
    • 1
  • Jing Li
    • 1
  • Lai-yu Kwok
    • 1
  • Jie Yu
    • 1
  • Zhihong Sun
    • 1
  • Tiansong Sun
    • 1
    Email author
  1. 1.Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural AffairsInner Mongolia Agricultural UniversityHohhotChina

Personalised recommendations