Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos

Article

Abstract

Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

Keywords

16S rRNA gene sequencing Microbial community diversity Aging flue-cured tobaccos PICRUSt Functional profiling 

Notes

Acknowledgements

This study was supported by Hainan’s Key Project of Research and Development Plan (No. ZDYF2017155), Taishan Scholars Climbing Program of Shandong (No. TSPD20150210), and Youth Innovation Promotion Association CAS No. 2017252.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2018_1525_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1 (XLSX 19 KB)

References

  1. 1.
    Alivisatos AP, Blaser MJ, Brodie EL, Chun M, Dangl JL, Donohue TJ, Dorrestein PC, Gilbert JA, Green JL, Jansson JK, Knight R, Maxon ME, McFall-Ngai MJ, Miller JF, Pollard KS, Ruby EG, Taha SA (2015) A unified initiative to harness Earth’s microbiomes. Science 350(6260):507CrossRefPubMedGoogle Scholar
  2. 2.
    Wang JJ, Xu ZC, Fan JL, Wang Y, Tian ZJ, Chen YT (2015) Effects of X-ray irradiation on the microbial growth and quality of flue-cured tobacco during aging. Radiat Phys Chem 111:9–13.  https://doi.org/10.1016/j.radphyschem.2015.02.005 CrossRefGoogle Scholar
  3. 3.
    Zhao MQ, Wang BX, Li FX, Qiu LY, Li FF, Wang SM, Cui JK (2007) Analysis of bacterial communities on aging flue-cured tobacco leaves by 16S rDNA PCR-DGGE technology. Appl Microbiol Biotechnol 73(6):1435–1440.  https://doi.org/10.1007/s00253-006-0625-x CrossRefPubMedGoogle Scholar
  4. 4.
    Jensen CO, Parmele HB (1950) Fermentation of cigar-type tobacco. Ind Eng Chem 42(3):519–522CrossRefGoogle Scholar
  5. 5.
    Huang JW, Yang JK, Duan YQ, Gu W, Gong XW, Zhe W, Su C, Zhang KQ (2010) Bacterial diversities on unaged and aging flue-cured tobacco leaves estimated by 16S rRNA sequence analysis. Appl Microbiol Biotechnol 88(2):553–562.  https://doi.org/10.1007/s00253-010-2763-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Gong XW, Yang JK, Duan YQ, Dong JY, Zhe W, Wang L, Li QH, Zhang KQ (2009) Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Res Microbiol 160(3):200–204.  https://doi.org/10.1016/j.resmic.2009.02.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu JL, Ma GH, Chen T, Hou Y, Yang SH, Zhang KQ, Yang J (2015) Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 99(9):3775–3785.  https://doi.org/10.1007/s00253-015-6525-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Tamayo AI, Cancho F (1953) Microbiology of the fermentation of Spanish tobacco. In: International congress microbiolgy, pp 48–50Google Scholar
  9. 9.
    English CF, Bell EJ, Berger AJ (1967) Isolation of thermophiles from broadleaf tobacco and effect of pure culture inoculation on cigar aroma and mildness. Appl Microbiol 15(1):117–119PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kaelin P, Morel P, Gadani F (1994) Isolation of Bacillus thuringiensis from stored tobacco and Lasioderma serricorne (F.). Appl Environ Microbiol 60(1):19–25PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen C, Li X, Yang J, Gong X, Li B, Zhang K-Q (2008) Isolation of nicotine-degrading bacterium Pseudomonas sp. Nic22, and its potential application in tobacco processing. Int Biodeterior Biodegradation 62(3):226–231CrossRefGoogle Scholar
  12. 12.
    Ruan A, Min H, Peng X, Huang Z (2005) Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Res Microbiol 156(5–6):700–706CrossRefPubMedGoogle Scholar
  13. 13.
    Li H, Li X, Duan Y, Zhang K-Q, Yang J (2010) Biotransformation of nicotine by microorganism: the case of Pseudomonas spp. Applied Microbiol Biotechnol 86(1):11–17CrossRefGoogle Scholar
  14. 14.
    Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “Uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129CrossRefPubMedGoogle Scholar
  15. 15.
    Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7.  https://doi.org/10.1111/j.1574-6968.2010.02000.x PubMedGoogle Scholar
  16. 16.
    González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrósalió C, Moran MA (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66(10):4237–4246CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ibekwe AM, Grieve CM (2004) Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol Ecol 48(2):239–248.  https://doi.org/10.1016/j.femsec.2004.01.012 CrossRefPubMedGoogle Scholar
  18. 18.
    Yang ZP, Yang WP, Li SC, Hao JM, Su ZF, Sun M, Gao ZQ, Zhang CL (2016) Variation of bacterial community diversity in rhizosphere soil of sole-cropped versus intercropped wheat field after harvest. PLoS ONE 11(3):e0150618.  https://doi.org/10.1371/journal.pone.0150618 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Telias A, White JR, Pahl DM, Ottesen AR, Walsh CS (2011) Bacterial community diversity and variation in spray water sources and the tomato fruit surface. BMC Microbiol 11:81.  https://doi.org/10.1186/1471-2180-11-81 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang XW, Qu YY, Ma Q, Zhang ZJ, Li DX, Wang JW, Shen WL, Shen E, Zhou JT (2015) Illumina MiSeq sequencing reveals diverse microbial communities of activated sludge systems stimulated by different aromatics for indigo biosynthesis from indole. PLoS ONE 10(4):e0125732.  https://doi.org/10.1371/journal.pone.0125732 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821.  https://doi.org/10.1038/nbt.2676 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thelusmond JR, Strathmann TJ, Cupples AM (2016) The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Sci Total Environ 571:1241–1252.  https://doi.org/10.1016/j.scitotenv.2016.07.154 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen L, Luo Y, Xu J, Yu Z, Zhang K, Brookes PC (2016) Assessment of bacterial communities and predictive functional profiling in soils subjected to short-term fumigation-incubation. Microb Ecol 72(1):240–251.  https://doi.org/10.1007/s00248-016-0766-0 CrossRefPubMedGoogle Scholar
  24. 24.
    Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E (2018) Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci Total Environ 616–617:326–334.  https://doi.org/10.1016/j.scitotenv.2017.10.322 CrossRefPubMedGoogle Scholar
  25. 25.
    Koo H, Mojib N, Hakim JA, Hawes I, Tanabe Y, Andersen DT, Bej AK (2017) Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee, East Antarctica. Front Microbiol 8:1347.  https://doi.org/10.3389/fmicb.2017.01347 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR, Luna RA, Versalovic J, Shulman RJ (2015) Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment Pharmacol Ther 42(4):418–427.  https://doi.org/10.1111/apt.13286 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gregory JC, Justin K, Jesse S, Kyle B, Frederic DB, Elizabeth KC, Noah F, Antonio GP, Julia KG, Jeffrey IG, Gavin AH, Scott TK, Dan K, Jeremy EK, Ruth EL, Catherine AL, Daniel M, Brian DM, Meg P, Jens R, Joel RS, Peter JT, William AW, Jeremy W, Tanya Y, Jesse Z, Knight R (2010) QIIME allows analysis of highthroughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth0510-335 CrossRefGoogle Scholar
  28. 28.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998.  https://doi.org/10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  29. 29.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7(7):1344–1353.  https://doi.org/10.1038/ismej.2013.16 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nam YD, Lee SY, Lim SI (2012) Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int J Food Microbiol 155(1–2):36–42.  https://doi.org/10.1016/j.ijfoodmicro.2012.01.013 CrossRefPubMedGoogle Scholar
  32. 32.
    Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67(10):4399–4406CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Morgan NP, Paramvir SD, Adam PA (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490CrossRefGoogle Scholar
  34. 34.
    Dixon LF, Darkis FR, Wolf FA, Hall JA, Jones EP, Gross PM (1936) Flue-cured tobacco1 natural aging of flue-cured cigarette tobaccos. Ind Eng Chem 28(2):180–189CrossRefGoogle Scholar
  35. 35.
    Poudel P, Tashiro Y, Miyamoto H, Miyamoto H, Okugawa Y, Sakai K (2017) Development of a systematic feedback isolation approach for targeted strains from mixed culture systems. J Biosci Bioeng 123(1):63–70.  https://doi.org/10.1016/j.jbiosc.2016.07.019 CrossRefPubMedGoogle Scholar
  36. 36.
    Chen L, Brookes PC, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10.  https://doi.org/10.1016/j.soilbio.2016.04.004 CrossRefGoogle Scholar
  37. 37.
    Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340.  https://doi.org/10.1038/srep24340 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521(7551):208–212.  https://doi.org/10.1038/nature14238 CrossRefPubMedGoogle Scholar
  39. 39.
    Miki T, Yokokawa T, Matsui K (2014) Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proc Biol Sci 281(1776):20132498.  https://doi.org/10.1098/rspb.2013.2498 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xu Z, Malmer D, Langille MG, Way SF, Knight R (2014) Which is more important for classifying microbial communities: who’s there or what they can do? ISME J 8(12):2357–2359.  https://doi.org/10.1038/ismej.2014.157 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhao L, Zhu CJ, Gao Y, Wang C, Li XZ, Shu M, Shi YP, Zhong WH (2012) Nicotine degradation enhancement by Pseudomonas stutzeri ZCJ during aging process of tobacco leaves. World J Microbiol Biotechnol 28(5):2077–2086.  https://doi.org/10.1007/s11274-012-1010-9 CrossRefPubMedGoogle Scholar
  42. 42.
    Wei XT, Deng XW, Cai DB, Ji ZX, Wang CJ, Yu J, Li JP, Chen SW (2014) Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco. J Agric Food Chem 62(52):12701–12706.  https://doi.org/10.1021/jf504084z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Yunnan Academy of Tobacco SciencesKunmingChina

Personalised recommendations