SOS Response Inhibitory Properties by Potential Probiotic Formulations of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933 Obtained by Solid-State Fermentation

  • Evgeniya V. Prazdnova
  • Maria S. Mazanko
  • Anzhelica B. Bren
  • Vladimir A. Chistyakov
  • Richard Weeks
  • Michael L. Chikindas


The ability of fermentates of two potential probiotic strains, Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933, to lower the SOS response in bacteria was evaluated using Escherichia coli-based Lux biosensors (pRecA-lux) and the tested bacilli fermentates obtained through solid-state fermentation. The SOS response was stimulated by the addition of ciprofloxacine. Preparations of both Bacillus fermentates demonstrated SOS-inhibitory activity (up to 54.21%). The strain КATMIRA1933 was characterized by higher SOS-inhibitory activity. The active components of the fermentates were stable against heating, proteinase, and RNase action.



This work was supported by Russian Science Foundation (Project No. 16-16-04032).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interests.


  1. 1.
    Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR (2016) RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem Biol 23(3):381–391CrossRefGoogle Scholar
  2. 2.
    Altuvia S (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10(3):257–261CrossRefGoogle Scholar
  3. 3.
    Anandharaj M, Sivasankari B, Rani RP (2014) Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review. Chinese J Biol 2014:1–7CrossRefGoogle Scholar
  4. 4.
    Chistyakov VA, Prazdnova EV, Kharchenko EY, Kurbatov SV, Batiushin MM, Levitskaya ES, Mazanko MS, Churilov MN (2016) 7-(1-Methyl-3-Pyrrolyl-)-4, 6-dinitrobenzofuroxan reduces the frequency of antibiotic resistance mutations induced by ciprofloxacin in bacteria. Int J BioMed 6(3):228–232CrossRefGoogle Scholar
  5. 5.
    Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3(6):e176CrossRefGoogle Scholar
  6. 6.
    Fornelos N, Browning DF, Butala M (2016) The use and abuse of LexA by mobile genetic elements. Trends Microbiol 24(5):391–401CrossRefGoogle Scholar
  7. 7.
    Foster PL (1991) In vivo mutagenesis. Methods Enzymol 204:114–125CrossRefGoogle Scholar
  8. 8.
    Gottesman S, McCullen CA, Guillier M, Vanderpool CK, Majdalani N, Benhammou J, Thompson KM, FitzGerald PC, Sowa NA, FitzGerald DJ (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71:1–11CrossRefGoogle Scholar
  9. 9.
    Janion C (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci 4(6):338–344CrossRefGoogle Scholar
  10. 10.
    Karlin S, Brocchieri L (1996) Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 178(7):1881–1894CrossRefGoogle Scholar
  11. 11.
    Lee AM, Ross CT, Zeng B, Singleton SF (2005) A molecular target for suppression of the evolution of antibiotic resistance: inhibition of the Escherichia coli RecA protein by N6-(1-Naphthyl)-ADP. J Med Chem 48(17):5408–5411CrossRefGoogle Scholar
  12. 12.
    Lewis LK, Harlow GR, Gregg-Jolly LA, Mount DW (1994) Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol 241(4):507–523CrossRefGoogle Scholar
  13. 13.
    Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25(9):1389–1403CrossRefGoogle Scholar
  14. 14.
    Malik M, Marks KR, Mustaev A, Zhao X, Chavda K, Kerns RJ, Drlica K (2011) Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis. Antimicrob Agents Chemother 55(5):2335–2343CrossRefGoogle Scholar
  15. 15.
    Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  16. 16.
    Manukhov IV, Eroshnikov GE, Vissokikh MY, Zavilgelsky GB (1999) Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins. FEBS Lett 448(2–3):265–268CrossRefGoogle Scholar
  17. 17.
    Nautiyal A, Patil KN, Muniyappa K (2004) Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J Antimicrob Chemother 69(7):1834–1843CrossRefGoogle Scholar
  18. 18.
    Park GH, Song HM, Kim YS, Jeon Y, Koo JS, Jeong HJ, Jeong JB (2017) Anti-cancer activity of Bacillus amyloliquefaciens AK-0 through cyclin D1 proteasomal degradation via GSK3β-dependent phosphorylation of threonine-286. Pharmazie 72(6):348–354Google Scholar
  19. 19.
    Patel M, Jiang Q, Woodgate R, Cox MM, Goodman MF (2010) A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 45(3):171–184CrossRefGoogle Scholar
  20. 20.
    Peterson EJR, Janzen WP, Kiree D, Singleton SF (2012) High-throughput screening for RecA inhibitors using a transcreener adenosine 5′-O-diphosphate assay. Assay Drug Dev Technol 10(3):260–268CrossRefGoogle Scholar
  21. 21.
    Pourahmad JR, Pasand S (2016) Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. Gene 576(1):115–118CrossRefGoogle Scholar
  22. 22.
    Prazdnova EV, Chistyakov VA, Churilov MN, Mazanko MS, Bren AB, Volski A, Chikindas ML (2015) DNA-protection and antioxidant properties of fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Lett App Microbiol 61(6):549–554CrossRefGoogle Scholar
  23. 23.
    Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J Mol Biol 212(1):79–96CrossRefGoogle Scholar
  24. 24.
    Sengupta S, Bandyopadhyay S (2012) De novo design of potential RecA inhibitors using multi objective optimization. TCBB 9(4):1139–1154Google Scholar
  25. 25.
    Syngai GG, Gopi R, Bharali R, Dey S, Lakshmanan GMA, Ahmed G (2016) Probiotics—the versatile functional food ingredients. JFST 53(2):921–933Google Scholar
  26. 26.
    Varhimo E, Savijoki K, Jefremoff H, Jalava J, Sukura A, Varmanen P (2008) Ciprofloxacin induces mutagenesis to antibiotic resistance independent of UmuC in Streptococcus uberis. Environ Microbiol 10(8):2179–2183CrossRefGoogle Scholar
  27. 27.
    Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48(1):60–93Google Scholar
  28. 28.
    Wigle TJ, Sexton JZ, Gromova AV, Hadimani MB, Hughes MA, Smith JR, Yeh L, Singleton SF (2009) Inhibitors of RecA activity discovered by high-throughput screening: cell-permeable small molecules attenuate the SOS response in Escherichia coli. J Biomol Screen 14(9):1092–1101CrossRefGoogle Scholar
  29. 29.
    Wigle TJ, Singleton SF (2007) Directed molecular screening for RecA ATPase. Inhibitors Bioorg Med Chem Lett 17(12):3249–3253CrossRefGoogle Scholar
  30. 30.
    Zavilgelsky GB, Kotova V, Manukhov IV (2007) Action of 1,1-dimethylhydrazine on bacterial cell sis determined by hydrogen peroxide. Mutat Res Genet Toxicol Environ Mutagen 634(1):172–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academy of Biology and BiotechnologiesSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Health Promoting Naturals Laboratory, School of Environmental and Biological SciencesRutgers State UniversityNew BrunswickUSA

Personalised recommendations