Current Microbiology

, Volume 75, Issue 5, pp 574–579 | Cite as

Complete Genome Sequence of a Novel T7-Like Bacteriophage from a Pasteurella multocida Capsular Type A Isolate

  • Yibao Chen
  • Erchao Sun
  • Jiaoyang Song
  • Lan Yang
  • Bin Wu
Article

Abstract

A novel virulent bacteriophage, vB_PmuP_PHB02 (phage PHB02), infecting Pasteurella multocida capsular type A strains, was isolated from wastewater from a swine farm in China. Phage PHB02 has a linear double-stranded DNA genome consisting of 38,670 base pairs (bp), with a G+C content of 40.8% and a 127-bp terminal redundancy. Forty-eight putative open reading frames were identified, and no transfer RNA-encoding genes were detected. The morphology and genomic structure of phage PHB02 resemble those of T7-like phages belonging to the family Podoviridae, of the order Caudovirales. Phage PHB02 was stable over a wide range of temperatures (4–50 °C) and pH values (5.0–9.0), and lysed 30 of the 31 capsular-type-A P. multocida strains tested. Phage PHB02 had no effect on other bacterial species or on P. multocida strains belonging to capsular types D or F.

Notes

Compliance with Ethical Standards

Conflict of interest

I would like to declare on behalf of my co-authors that we have no conflict of interest.

Research Involving human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

284_2017_1419_MOESM1_ESM.docx (853 kb)
Supplementary material 1 (DOCX 852 KB)
284_2017_1419_MOESM2_ESM.docx (268 kb)
Supplementary material 2 (DOCX 268 KB)
284_2017_1419_MOESM3_ESM.docx (178 kb)
Supplementary material 3 (DOCX 178 KB)
284_2017_1419_MOESM4_ESM.docx (990 kb)
Supplementary material 4 (DOCX 989 KB)
284_2017_1419_MOESM5_ESM.docx (21 kb)
Supplementary material 5 (DOCX 21 KB)
284_2017_1419_MOESM6_ESM.docx (22 kb)
Supplementary material 6 (DOCX 22 KB)

References

  1. 1.
    Wilkie IW, Harper M, Boyce JD, Adler B (2012) Pasteurella multocida: diseases and pathogenesis. In: Pasteurella multocida. Springer, Berlin, pp 1–22Google Scholar
  2. 2.
    Townsend KM, Boyce JD, Chung JY, Frost AJ, Adler B (2001) Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J Clin Microbiol 39(3):924–929PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Watt JM, Swiatlo E, Wade MM, Champlin FR (2003) Regulation of capsule biosynthesis in serotype A strains of Pasteurella multocida. FEMS Microbiol Lett 225(1):9–14PubMedCrossRefGoogle Scholar
  4. 4.
    Strugnell BW, Dagleish MP, Bayne CW, Brown M, Ainsworth HL, Nicholas RA. Wood A, Hodgson JC (2011) Investigations into an outbreak of corvid respiratory disease associated with Pasteurella multocida. Avian pathol 40(3):329–336PubMedCrossRefGoogle Scholar
  5. 5.
    Christenson ES, Ahmed HM, Durand CM (2015) Pasteurella multocida infection in solid organ transplantation. Lancet Infect Dis 15(2):235–240PubMedCrossRefGoogle Scholar
  6. 6.
    Kirchner C, Eisenstark A (1956) Lysogeny in Pasteurella multocida. Am J Vet Res 17(64):547PubMedGoogle Scholar
  7. 7.
    Nielsen JP, Rosdahl VT (1990) Development and epidemiological applications of a bacteriophage typing system for typing Pasteurella multocida. J Clin Microbiol 28(1):103–107PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pullinger GD, Bevir T, Lax AJ (2004) The Pasteurella multocida toxin is encoded within a lysogenic bacteriophage. Mol Microbiol 51(1):255–269PubMedCrossRefGoogle Scholar
  9. 9.
    Campoy S, Aranda J, Àlvarez G, Barbé J, Llagostera M (2006) Isolation and sequencing of a temperate transducing phage for Pasteurella multocida. Appl Environ Microb 72(5):3154–3160CrossRefGoogle Scholar
  10. 10.
    Adams MH (1959) Bacteriophages. BacteriophagesGoogle Scholar
  11. 11.
    Chang HC, Chen CR, Lin JW, Shen GH, Chang KM, Tseng YH, Weng SF (2005) Isolation and characterization of novel giant Stenotrophomonas maltophilia phage φSMA5. Appl Environ Microb 71(3):1387–1393CrossRefGoogle Scholar
  12. 12.
    Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H (2004) In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother 48(7):2558–2569PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen M, Xu J, Yao H, Lu C, Zhang W (2016) Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 582(1):47–58PubMedCrossRefGoogle Scholar
  14. 14.
    Haq IU, Chaudhry WN, Andleeb S, Qadri I (2012) Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol 63(4):954–963CrossRefGoogle Scholar
  15. 15.
    Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Krisitansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714PubMedCrossRefGoogle Scholar
  17. 17.
    Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(23):4636–4641PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26(2):544–548PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y (2014) Scrutinizing virus genome termini by high-throughput sequencing. PLoS ONE 9(1):e85806PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Summer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R (2007) Rz/Rz1 lysis gene equivalents in phages of gram negative hosts. J Mol Biol 373(5):1098–1112PubMedCrossRefGoogle Scholar
  24. 24.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Adams MH, Park BH (1956) An enzyme produced by a phage-host cell system. II. The properties of the polysaccharide depolymerase. Virology 2(6):719–736PubMedCrossRefGoogle Scholar
  26. 26.
    Stirm S, Bessler W, Fehmel F, Freund-Mölbert E (1971) Bacteriophage particles with endo-glycosidase activity. J Virol 8(3):343–346PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J 3rd, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157: H7 bacteriophage rV5. J Virol 10(1):1CrossRefGoogle Scholar
  28. 28.
    Serwer P, Watson RH, Son M (1990) Role of gene 6 exonuclease in the replication and packaging of bacteriophage T7 DNA. J Mol Biol 215(2):287–299PubMedCrossRefGoogle Scholar
  29. 29.
    Michalewicz J, Nicholson AW (1992) Molecular cloning and expression of the bacteriophage T7 0.7(protein kinase) gene. Virology 186(2):452–462PubMedCrossRefGoogle Scholar
  30. 30.
    James E, Liu M, Sheppard C, Mekler V, Cámara B, Liu B, Simpson P, Cota E, Severinov K, Matthews S, Wigneshweraraj S (2012) Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol Cell 47(5):755–766PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Shi Y, Yan Y, Ji W, Du B, Meng X, Wang H, Sun J (2012) Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J 9(1):70PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Veesler D, Cambillau C (2011) A common evolutionary origin for tailed bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75(3):423–433PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yibao Chen
    • 1
    • 2
  • Erchao Sun
    • 1
    • 2
  • Jiaoyang Song
    • 1
  • Lan Yang
    • 1
    • 2
  • Bin Wu
    • 1
    • 2
  1. 1.State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
  2. 2.The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina

Personalised recommendations