Advertisement

Current Microbiology

, Volume 75, Issue 4, pp 499–504 | Cite as

Sodium Polyanethol Sulfonate Modulates Natural Transformation of SigH-Expressing Staphylococcus aureus

  • Le Thuy Thi Nguyen
  • Aya J. Takemura
  • Ryosuke L. Ohniwa
  • Shinji Saito
  • Kazuya Morikawa
Article
  • 153 Downloads

Abstract

Expression of genes required for natural genetic competence in Staphylococcus aureus is controlled by an alternative transcription sigma factor, SigH. However, even in the SigH-expressing cells, the DNA transformation efficiency varies depending on culture conditions. We report here that cells grown in the competence-inducing medium (CS2 medium) exhibit enlarged morphology with disintegrated cell walls. Notably, an autolysis inhibitor, Sodium Polyanethol Sulfonate (SPS), facilitated transformation in CS2 medium in a dose-dependent manner, suggesting the involvement of the cell wall metabolism in transformation. However, the transformation efficiency of cells grown in TSB was not improved by physical or enzymatic damage on the cell walls.

Notes

Acknowledgements

We thank Ms. Junko Sakamoto for electron microscopy. This work was supported by Takeda Science Foundation, Pfizer Academic Contributions, and The Waksman Foundation of Japan.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

284_2017_1409_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1591 KB)

References

  1. 1.
    Cafini F, Romero VM, Morikawa K (2017) Mechanisms of horizontal gene transfer, in The rise of virulence and antibiotic resistance in Staphylococcus aureus. InTechGoogle Scholar
  2. 2.
    Morikawa K, Inose Y, Okamura H, Maruyama A, Hayashi H, Takeyasu K et al (2003) A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells 8:699–712CrossRefPubMedGoogle Scholar
  3. 3.
    Morikawa K, Takemura AJ, Inose Y, Tsai M, Nguyen Thi le T, Ohta T et al (2012) Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog 8:e1003003CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nguyen Thi le T, Romero VM, Morikawa K (2016) Cell wall-affecting antibiotics modulate natural transformation in SigH-expressing Staphylococcus aureus. J Antibiot 69:464–466CrossRefGoogle Scholar
  5. 5.
    Anderson RC, Haverkamp RG, Yu PL (2004) Investigation of morphological changes to Staphylococcus aureus induced by ovine-derived antimicrobial peptides using TEM and AFM. FEMS Microbiol Lett 240:105–110CrossRefPubMedGoogle Scholar
  6. 6.
    Mani N, Tobin P, Jayaswal RK (1993) Isolation and characterization of autolysis-defective mutants of Staphylococcus aureus created by Tn917-lacZ mutagenesis. J Bacteriol 175:1493–1499CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sugai M, Akiyama T, Komatsuzawa H, Miyake Y, Suginaka H (1990) Characterization of sodium dodecyl sulfate-stable Staphylococcus aureus bacteriolytic enzymes by polyacrylamide gel electrophoresis. J Bacteriol 172:6494–6498CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Qoronfleh MW, Wilkinson BJ (1986) Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes. Antimicrob Agents Chemother 29:250–257CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wecke J, Lahav M, Ginsburg I, Kwa E, Giesbrecht P (1986) Inhibition of wall autolysis of staphylococci by sodium polyanethole sulfonate “liquoid”. Arch Microbiol 144:110–115CrossRefPubMedGoogle Scholar
  10. 10.
    Dubrac S, Boneca IG, Poupel O, Msadek T (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kumar JK (2008) Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 80:555–561CrossRefPubMedGoogle Scholar
  12. 12.
    Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181–196CrossRefPubMedGoogle Scholar
  13. 13.
    Fagerlund A, Granum PE, Havarstein LS (2014) Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 94:557–579CrossRefPubMedGoogle Scholar
  14. 14.
    Briley K Jr, Prepiak P, Dias MJ, Hahn J, Dubnau D (2011) Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol Microbiol 81:23–39CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D (2015) ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 97:454–471CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726CrossRefPubMedGoogle Scholar
  17. 17.
    Ranhand JM (1973) Autolytic activity and its association with the development of competence in group H streptococci. J Bacteriol 115:607–614PubMedPubMedCentralGoogle Scholar
  18. 18.
    van der Kooi-Pol MM, Reilman E, Sibbald MJ, Veenstra-Kyuchukova YK, Kouwen TR, Buist G et al (2012) Requirement of signal peptidase ComC and thiol-disulfide oxidoreductase DsbA for optimal cell surface display of pseudopilin ComGC in Staphylococcus aureus. Appl Environ Microbiol 78:7124–7127CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Berge MJ, Kamgoue A, Martin B, Polard P, Campo N, Claverys JP (2013) Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog 9:e1003596CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Human Biology Program, School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
  2. 2.Center for BiotechnologyNational Taiwan UniversityTaipeiTaiwan
  3. 3.Division of Biomedical Science, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  4. 4.Biotechnology CenterHo Chi Minh CityVietnam

Personalised recommendations