Current Microbiology

, Volume 74, Issue 10, pp 1216–1225 | Cite as

Microbial Communities in Different Tissues of Atta sexdens rubropilosa Leaf-cutting Ants

  • Alexsandro S. Vieira
  • Manuela O. Ramalho
  • Cintia Martins
  • Vanderlei G. Martins
  • Odair C. Bueno
Article

Abstract

Bacterial endosymbionts are common in all insects, and symbiosis has played an integral role in ant evolution. Atta sexdens rubropilosa leaf-cutting ants cultivate their symbiotic fungus using fresh leaves. They need to defend themselves and their brood against diseases, but they also need to defend their obligate fungus gardens, their primary food source, from infection, parasitism, and usurpation by competitors. This study aimed to characterize the microbial communities in whole workers and different tissues of A. sexdens rubropilosa queens using Ion Torrent NGS. Our results showed that the microbial community in the midgut differs in abundance and diversity from the communities in the postpharyngeal gland of the queen and in whole workers. The main microbial orders in whole workers were Lactobacillales, Clostridiales, Enterobacteriales, Actinomycetales, Burkholderiales, and Bacillales. In the tissues of the queens, the main orders were Burkholderiales, Clostridiales, Syntrophobacterales, Lactobacillales, Bacillales, and Actinomycetales (midgut) and Entomoplasmatales, unclassified γ-proteobacteria, and Actinomycetales (postpharyngeal glands). The high abundance of Entomoplasmatales in the postpharyngeal glands (77%) of the queens was an unprecedented finding. We discuss the role of microbial communities in different tissues and castes. Bacteria are likely to play a role in nutrition and immune defense as well as helping antimicrobial defense in this ant species.

Keywords

Attini Endosymbiont Entomoplasmatales Next-generation sequencing 

Notes

Acknowledgements

We are grateful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), Grant No. 2012/12541-3 to ASV, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Grants No. 157837/2015-7 to ASV and 306910/2011-0 to OCB, and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Grant No. 007343/2014-00) to MOR, for funding. We are grateful to CEIS (Center for the Study of Social Insects) at Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)–Rio Claro, SP, Brazil, for granting access to the Molecular Biology Laboratory. We also thank Life Technologies (CA, USA) for sequencing using Next-generation sequencing (Ion Torrent PGM) equipments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Anderson KE, Russell JA, Moreau CS et al (2012) Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol 21:2282–2296. doi: 10.1111/j.1365-294X.2011.05464.x CrossRefPubMedGoogle Scholar
  2. 2.
    Bolton B (2014) An online catalog of the ants of the world. http://antcat.org. Accessed 01 Oct 2016
  3. 3.
    Brady SG, Fisher BL, Schultz TR et al (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103:18172–18177. doi: 10.1073/pnas.0605858103 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barke J, Seipke R, Gruschow S et al (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109. doi: 10.1186/1741-7007-8-109 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cook SC, Davidson DW (2006) Nutritional and functional biology of exudate-feeding ants. Entomol Exp Appl 118:1–10. doi: 10.1111/j.1570-7458.2006.00374.x CrossRefGoogle Scholar
  6. 6.
    Currie CR (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380CrossRefPubMedGoogle Scholar
  7. 7.
    Currie C, Scott J, Summerbell R et al (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–705. doi: 10.1038/19519 CrossRefGoogle Scholar
  8. 8.
    Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83. doi: 10.1126/science.1119744 CrossRefPubMedGoogle Scholar
  9. 9.
    Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 15:4516–4522. doi: 10.1073/pnas.1000080107 CrossRefGoogle Scholar
  10. 10.
    Decio P, Vieira AS, Dias NB et al (2016) The postpharyngeal gland: specialized organ for lipid nutrition in leaf-cutting ants. PLoS ONE 11(5):e0154891. doi: 10.1371/journal.pone.0154891 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Delage-Darchen B (1976) Les glandes postpharyngeal dês fourmis connaissances actuellessur leur structure, leur fonctionnement, leur rôle. L’Année Biologique 15(1–2):63–76Google Scholar
  12. 12.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Feldhaar H, Straka J, Krischke M et al (2007) Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5:48. doi: 10.1186/1741-7007-5-48 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fernández-Marín H, Bruner G, Gomez EB et al (2013) Dynamic disease management in Trachymyrmex fungus-growing ants (Attini: Formicidae). Am Nat 181:571–582. doi: 10.1086/669664 CrossRefPubMedGoogle Scholar
  15. 15.
    Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208. doi: 10.1128/AEM.02616-06 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Funaro CF, Kronauer DJC, Moreau CS et al (2011) Army ants harbor a host-specific clade of Entomoplasmatales Bacteria. Appl Environ Microbiol 77:346–350. doi: 10.1128/AEM.01896-10 CrossRefPubMedGoogle Scholar
  17. 17.
    Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453. doi: 10.1146/annurev.ecolsys.34.011802.132410 CrossRefGoogle Scholar
  18. 18.
    Herzner G, Kaltenpoth M, Poettinger T et al (2013) Morphology, chemistry and function of the postpharyngeal gland in the South American digger wasps Trachypus boharti and Trachypus elongates. PLoS ONE 8(12):e82780. doi: 10.1371/journal.pone.0082780 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hölldobler B, Wilson EO (2011) The leafcutter ants. WW Norton, New YorkGoogle Scholar
  20. 20.
    Haeder S, Wirth R, Herz H et al (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746. doi: 10.1073/pnas.0812082106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Chapman & Hall, London, pp 19–54CrossRefGoogle Scholar
  22. 22.
    Ishak HD, Miller JL, Sen R et al (2011) Microbiomes of ant castes implicate new microbial roles in the fungus growing ant Trachymyrmex septentrionalis. Sci Rep 1:204. doi: 10.1038/srep00204 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jaffe K, Caetano FH, Sánchez P et al (2001) Sensitivity of ant (Cephalotes) colonies and individuals to antibiotics implies feeding symbiosis with gut microorganisms. Can J Zool 79:1120–1124. http://hdl.handle.net/11449/33296
  24. 24.
    Kellner K, Ishak HD, Linksvayer TA et al (2015) Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiol Ecol 91:fiv073. doi: 10.1093/femsec/fiv073 CrossRefPubMedGoogle Scholar
  25. 25.
    Kautz S, Rubin BER, Moreau CS (2013) Bacterial Infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche. doi: 10.1155/2013/936341 Google Scholar
  26. 26.
    Lanan MC, Rodrigues PAP, Agellon A et al (2016) A bacterial filter protects and structures the gut microbiome of an insect. ISME J. doi: 10.1038/ismej.2015.264 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Long YH, Xie L, Liu N et al (2010) Comparison of gut-associated and nest-associated microbial communities of a fungus growing termite (Odontotermes yunnanensis). Insect Sci 17:265–276. doi: 10.1111/j.1744-7917.2010.01327.x CrossRefGoogle Scholar
  28. 28.
    Moreau CS, Bell CD, Vila R et al (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312(5770):101–104. doi: 10.1126/science.1124891 CrossRefPubMedGoogle Scholar
  29. 29.
    Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038. doi: 10.1126/science.281.5385.2034 CrossRefPubMedGoogle Scholar
  30. 30.
    Mueller UG (2002) Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160(Suppl. 4):S67–S98. doi: 10.1086/342084 PubMedGoogle Scholar
  31. 31.
    Mueller UG, Scott JJ, Ishak HD et al (2010) Monoculture of leafcutter ant gardens. PLoS ONE 5:e12668. doi: 10.1371/journal.pone.0012668 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Meirelles LA, McFrederick QS, Rodrigues A et al (2016) Bacterial microbiomes from vertically transmitted fungal inocula of the leaf-cutting ant Atta texana. Environ Microbiol Rep 8(5):630–640. doi: 10.1111/1758-2229.12415 CrossRefGoogle Scholar
  33. 33.
    Meyer F, Paarmann D, Souza MD et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386. doi: 10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  34. 34.
    Manjula A, Pushpanathan M, Sathyavathi S et al (2015) Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol. doi: 10.1007/s00284-015-0947-y PubMedGoogle Scholar
  35. 35.
    Makarova KS, Aravind L, Wolf YI et al (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65(1):44–79. doi: 10.1128/MMBR.65.1.44-79.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Oh D, Poulsen M, Currie C et al (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393. doi: 10.1038/nchembio.159 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Russell JA, Moreau CS, Goldman-Huertas B et al (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA 106:21236–21241. doi: 10.1073/pnas.0907926106 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ramalho MO, Bueno OC, Moreau CS (2017) Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evol Biol. doi: 10.1186/s12862-017-0945-8 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ramalho MO, Martins C, Silva LMR et al (2016) Molecular profile of the Brazilian Weaver Ant Camponotus textor Forel (Hymenoptera, Formicidae). Neotrop entomol. doi: 10.1007/s13744-016-0392-z PubMedGoogle Scholar
  40. 40.
    Stadler B, Dixon AFG (2005) Ecology and evolution of aphid-ant interactions. Annu Rev Ecol Evol Syst 36:345–372. doi: 10.1146/annurev.ecolsys.36.091704.175531 CrossRefGoogle Scholar
  41. 41.
    Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440. doi: 10.1073/pnas.0711024105 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sen R, Ishak H, Estrada D et al (2009) Generalized antifungal activity and screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. P Natl Acad Sci USA 106:17805–17810. doi: 10.1073/pnas.0904827106 CrossRefGoogle Scholar
  43. 43.
    Scott JJ, Budsberg KJ, Suen G et al (2010) Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PLoS ONE 5:e9922. doi: 10.1371/journal.pone.0009922 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Seipke RF, Barke J, Brearley C et al (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6:e22028. doi: 10.1371/journal.pone.0022028 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876. doi: 10.1111/j.1574-6976.2011 CrossRefPubMedGoogle Scholar
  46. 46.
    Santos AV, Dillon RJ, Dillon VM et al (2004) Occurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol Lett 239:319–323. doi: 10.1016/j.femsle.2004.09.005 CrossRefPubMedGoogle Scholar
  47. 47.
    Sapountzis P, Zhukova M, Hansen LH, Sørensen SJ, Schiøtt M, Boomsma JJ (2015) Acromyrmex leaf-cutting ants have simple gut microbiota with nitrogen-fixing potential. Appl Environ Microbiol 81:5527–5537. doi: 10.1128/AEM.00961-15 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stoll S, Gadau J, Gross ROY et al (2007) Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linnean Soc 90:399–412. doi: 10.1111/j.1095-8312.2006.00730.x CrossRefGoogle Scholar
  49. 49.
    Sanders JG, Powell S, Kronauer DJ et al (2014) Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol 23:1268–1283. doi: 10.1111/mec.12611 CrossRefPubMedGoogle Scholar
  50. 50.
    Suen G, Scott JJ, Aylward FO et al (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 6:9. doi: 10.1371/journal.pgen.1001129 CrossRefGoogle Scholar
  51. 51.
    Thiaucourt F, Bolske G (1996) Contagious caprine pleuropneumonia and other pulmonary mycoplasmoses of sheep and goats. Rev Sci Tech 15:1397–1414CrossRefPubMedGoogle Scholar
  52. 52.
    Vieira AS, Bueno OC, Camargo-Mathias MI (2012) Morphophysiological differences between the metapleural glands of fungus-growing and non-fungus growing ants (Hymenoptera, Formicidae). PLoS ONE 7:e43570. doi: 10.1371/journal.pone.0043570 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vieira AS, Morgan ED, Drijfhout FP et al (2012) Chemical composition of metapleural gland secretions of fungus-growing and non-fungus- growing ants. J Chem Ecol 38:1289e1297. doi: 10.1007/s10886-012-0185-8 CrossRefGoogle Scholar
  54. 54.
    Vieira AS, Bueno OC (2017) Lipid mobilization and acyl-coenzyme A dehydrogenase abundance in the postpharyngeal gland of a leaf-cutting ant. Sociobiology 63(4):1005–1014. doi: 10.13102/sociobiology.v63i4.1027 CrossRefGoogle Scholar
  55. 55.
    Wertz JT, Kim E, Breznak JA et al (2012) Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Env Microbiol 78:1544–1555. doi: 10.1128/AEM.06466-11 CrossRefGoogle Scholar
  56. 56.
    Zientz E, Feldhaar H, Stoll S et al (2005) Insights into the microbial world associated with ants. Arch Microbiol 184:199–206. doi: 10.1007/s00203-005-0041-0 CrossRefPubMedGoogle Scholar
  57. 57.
    Zucchi TD, Guidolin AS, Cônsoli FL (2010) Isolation and characterization of actinobacteria ectosymbionts from Acromyrmex subterraneus brunneus (Hymenoptera,Formicidae). Microbiol Res. doi: 10.1016/j.micres.2010.01.009 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Alexsandro S. Vieira
    • 1
  • Manuela O. Ramalho
    • 1
  • Cintia Martins
    • 2
  • Vanderlei G. Martins
    • 1
  • Odair C. Bueno
    • 1
  1. 1.Centro de Estudos de Insetos SociaisUNESP - Univ Estadual PaulistaRio ClaroBrazil
  2. 2.Universidade Federal do Piauí - Campus Ministro Reis VellosoParnaíbaBrazil

Personalised recommendations