Current Microbiology

, Volume 74, Issue 10, pp 1137–1147 | Cite as

Genome-Based Reclassification of Fusobacterium nucleatum Subspecies at the Species Level

  • Joong-Ki KookEmail author
  • Soon-Nang Park
  • Yun Kyong Lim
  • Eugene Cho
  • Eojin Jo
  • Hansung Roh
  • Yeseul Shin
  • Jayoung Paek
  • Hwa-Sook Kim
  • Hongik Kim
  • Jeong Hwan Shin
  • Young-Hyo ChangEmail author


Fusobacterium nucleatum is classified as four subspecies, subsp. nucleatum, polymorphum, vincentii, and animalis, based on DNA–DNA hybridization (DDH) patterns, phenotypic characteristics, and/or multilocus sequence analysis (MLSA). The gold standards for classification of bacterial species are DDH and 16S ribosomal RNA gene (16S rDNA) sequence homology. The thresholds of DDH and 16S rDNA similarity for delineation of bacterial species have been suggested to be >70 and 98.65%, respectively. Average nucleotide identity (ANI) and genome-to-genome distance (GGD) analysis based on genome sequences were recently introduced as a replacement for DDH to delineate bacterial species with ANI (95–96%) and GGD (70%) threshold values. In a previous study, F. hwasookii was classified as a new species based on MLSA and DDH results. 16S rDNA similarity between F. hwasookii type strain and F. nucleatum subspecies type strains was higher than that between F. nucleatum subspecies type strains. Therefore, it is possible that the four F. nucleatum subspecies can be classified as Fusobacterium species. In this study, we performed ANI and GGD analyses using the genome sequences of 36 F. nucleatum, five F. hwasookii, and one Fusobacterium periodonticum strain to determine whether the four F. nucleatum subspecies could be classified as species using OrthoANI and ANI web-based softwares provided by ChunLab and Kostas lab, respectively, and GGD calculator offered by German Collection of Microorganisms and Cell Cultures. ANI values calculated from OrthoANI and ANI calculators between the type strains of F. nucleatum subspecies ranged from 89.80 to 92.97 and from 90.40 to 91.90%, respectively. GGD values between the type strains of F. nucleatum subspecies ranged from 42.3 to 46.0%. ANI and GGD values among strains belonging to the same F. nucleatum subspecies, subsp. nucleatum, subsp. polymorphum, subsp. vincentii, and subsp. animalis were >96 and >68.2%, respectively. These results strongly suggest that F. nucleatum subsp. nucleatum, subsp. polymorphum, subsp. vincentii, and subsp. animalis should be classified as F. nucleatum, F. polymorphum, F. vincentii, and F. animalis, respectively.


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

284_2017_1296_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 38 kb)


  1. 1.
    Albandar JM, Brown LJ, Löe H (1997) Putative periodontal pathogens in subgingival plaque of young adults with and without early-onset periodontitis. J Periodontol 68:973–981CrossRefPubMedGoogle Scholar
  2. 2.
    Auch AF, Klenk HP, Göker M (2010) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. doi: 10.4056/sigs.541628 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. doi: 10.4056/sigs.531120 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cho E, Park SN, Lim YK, Shin Y, Paek J, Hwang CH, Chang YH, Kook JK (2015) Fusobacterium hwasookii sp. nov., isolated from a human periodontitis lesion. Curr Microbiol 70:169–175. doi: 10.1007/s00284-014-0692-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Conrads G, Citron DM, Mutters R, Jang S, Goldstein EJ (2004) Fusobacterium canifelinum sp. nov., from the oral cavity of cats and dogs. Syst Appl Microbiol 27:407–413. doi: 10.1078/0723202041438509 CrossRefPubMedGoogle Scholar
  6. 6.
    Dzink JL, Sheenan MT, Socransky SS (1990) Proposal of three subspecies of Fusobacterium nucleatum Knorr 1922: Fusobacterium nucleatum subsp. nucleatum subsp. nov., comb. nov.; Fusobacterium nucleatum subsp. polymorphum subsp. nov., nom. rev., comb. nov.; and Fusobacterium nucleatum subsp. vincentii subsp. nov., nom. rev., comb. nov. Int J Syst Bacteriol 40:74–78. doi: 10.1099/00207713-40-1-74 CrossRefPubMedGoogle Scholar
  7. 7.
    Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229. doi: 10.1099/00207713-39-3-224 CrossRefGoogle Scholar
  8. 8.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  9. 9.
    Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739. doi: 10.1038/nrmicro1236 CrossRefPubMedGoogle Scholar
  10. 10.
    Gharbia SE, Shah HN (1989) Glutamate dehydrogenase and 2-oxoglutarate reductase electrophoretic patterns and deoxyribonucleic acid-deoxyribonucleic acid hybridization among human oral isolates of Fusobacterium nucleatum. Int J Syst Bacteriol 39:467–470CrossRefGoogle Scholar
  11. 11.
    Gharbia SE, Shah HN (1990) Heterogeneity within Fusobacterium nucleatum, proposal of four subspecies. Lett Appl Microbiol 10:105–108. doi: 10.1111/j.1472-765X.1990.tb00276.x CrossRefGoogle Scholar
  12. 12.
    Gharbia SE, Shah HN (1992) Fusobacterium nucleatum subsp. Fusiforme subsp. nov. and Fusobacterium nucleatum subsp. animalis subsp. nov. as additional subspecies within Fusobacterium nucleatum. Int J Syst Bacteriol 42:296–298. doi: 10.1099/00207713-42-2-296 CrossRefPubMedGoogle Scholar
  13. 13.
    Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245. doi: 10.1016/j.syapm.2015.03.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi: 10.1099/ijs.0.64483-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Huo YB, Chan Y, Lacap-Bugler DC, Mo S, Woo PC, Leung WK, Watt RM (2017) Multilocus sequence analysis of phylogroup 1 and 2 oral Treponeme strains. Appl Environ Microbiol 83:e02499. doi: 10.1128/AEM.02499-16 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim HS, Lee DS, Chang YH, Kim MJ, Koh S, Kim J, Seong JH, Song SK, Shin HS, Son JB, Jung MY, Park SN, Yoo SY, Cho KW, Kim DK, Moon S, Kim D, Choi Y, Kim BO, Jang HS, Kim CS, Kim C, Choe SJ, Kook JK (2010) Application of rpoB and zinc protease gene for use in molecular discrimination of Fusobacterium nucleatum subspecies. J Clin Microbiol 48:545–553. doi: 10.1128/JCM.01631-09 CrossRefPubMedGoogle Scholar
  17. 17.
    Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi: 10.1099/ijs.0.059774-0 Erratum. In: Int J Syst Evol Microbiol (2014) 64: 1825 CrossRefPubMedGoogle Scholar
  18. 18.
    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  19. 19.
    Knorr M (1922) Über die fusospirillare Symbiose, die Gattung Fusobacterium (K.B. Lehmann) und Spirillum sputigenum. Zugleich ein Beitrag zur Bakteriologie der Mundhöhle. II. Mitteilung. Die Gattung Fusobacterium. Zentralblatt fur Bakteriologie, Parasitenkunde. Infektionskrankheiten und Hygiene. Abteilung I 89:4–22Google Scholar
  20. 20.
    Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. doi: 10.1128/JB.187.18.6258-6264.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kook JK, Park SN, Lim YK, Choi MH, Cho E, Kong SW, Shin Y, Paek J, Chang YH (2013) Fusobacterium nucleatum subsp. Fusiforme Gharbia and Shah 1992 is a later synonym of Fusobacterium nucleatum subsp. vincentii Dzink et al. 1990. Curr Microbiol 66:414–417. doi: 10.1007/s00284-012-0289-y CrossRefPubMedGoogle Scholar
  22. 22.
    Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. doi: 10.1099/ijsem.0.000760 CrossRefGoogle Scholar
  23. 23.
    Love DN, Cato EP, Johnson JL, Jones RF, Bailey M (1987) Deoxyribonucleic acid hybridization among strains of fusobacteria isolated from soft tissue infections of cats: comparison with human and animal type strains from oral and other sites. Int J Syst Bacteriol 37:23–26. doi: 10.1099/ijsem.0.000760 CrossRefGoogle Scholar
  24. 24.
    Potts TV, Holdeman LV, Slots J (1983) Relationships among the oral fusobacteria assessed by DNA–DNA hybridization. J Dent Res 62:702–705CrossRefPubMedGoogle Scholar
  25. 25.
    Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. doi: 10.1073/pnas.0906412106 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. 27.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  28. 28.
    Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047. doi: 10.1099/00207713-52-3-1043 PubMedGoogle Scholar
  29. 29.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849. doi: 10.1099/00207713-44-4-846 CrossRefGoogle Scholar
  30. 30.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111. doi: 10.1099/ijs.0.001123-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. doi: 10.1099/00207713-37-4-463 CrossRefGoogle Scholar
  33. 33.
    Whiley RA, Hall LM, Hardie JM, Beighton D (1999) A study of small-colony, beta-haemolytic, Lancefield group C streptococci within the anginosus group: description of Streptococcus constellatus subsp. pharyngis subsp. nov., associated with the human throat and pharyngitis. Int J Syst Bacteriol 49:1443–1449. doi: 10.1099/00207713-49-4-1443 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Joong-Ki Kook
    • 1
    • 2
    Email author
  • Soon-Nang Park
    • 1
  • Yun Kyong Lim
    • 1
  • Eugene Cho
    • 1
  • Eojin Jo
    • 1
  • Hansung Roh
    • 3
  • Yeseul Shin
    • 4
  • Jayoung Paek
    • 4
  • Hwa-Sook Kim
    • 5
  • Hongik Kim
    • 6
  • Jeong Hwan Shin
    • 7
  • Young-Hyo Chang
    • 4
    Email author
  1. 1.Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of DentistryChosun UniversityGwangjuRepublic of Korea
  2. 2.Oral Biology Research InstituteChosun UniversityGwangjuRepublic of Korea
  3. 3.Macrogen Inc.SeoulRepublic of Korea
  4. 4.ABS Research Support CenterKRIBBDaejeonRepublic of Korea
  5. 5.Department of Dental HygieneChunnam Techno UniversityChunnamRepublic of Korea
  6. 6.Vitabio, Inc.DaejeonRepublic of Korea
  7. 7.Department of Laboratory MedicineInje University College of MedicineBusanRepublic of Korea

Personalised recommendations