Skip to main content
Log in

Three New Soil-inhabiting Species of Trichoderma in the Stromaticum Clade with Test of Their Antagonism to Pathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Trichoderma is a dominant component of the soil mycoflora. During the field investigations of northern, central, and southwestern China, three new species in the Stromaticum clade were encountered from soil, and named as T. hebeiense, T. sichuanense, and T. verticillatum. Their phylogenetic positions were determined by analyses of the combined two genes: partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit-encoding genes. Distinctions between the new species and their close relatives were discussed. Trichoderma hebeiense appeared as a separate terminal branch. The species is distinctive by its oblong conidia and aggregated pustules in culture. Trichoderma sichuanense features in concentric colony and produces numerous clean exudates on aerial mycelium in culture. Trichoderma verticillatum is characterized by its verticillium-like synanamorph and production of abundant chlamydospores. In vitro antagonism towards the new species was tested by dual culture technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong SB, Seo H, Bae DW, Bae I (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138

    Article  CAS  Google Scholar 

  2. Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62:924–931

    Article  Google Scholar 

  3. Bissett J, Szakacs G, Nolan CA, Druzhinina I, Gradinger C, Kubicek CP (2003) New species of Trichoderma from Asia. Can J Bot 81:570–586

    Article  Google Scholar 

  4. Bissett J, Gams W, Jaklitsch WM, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6:263–295

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  6. Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837

    PubMed  Google Scholar 

  7. Chen K, Zhuang W-Y (2016) Trichoderma shennongjianum and Trichoderma tibetense, two new soil-inhabiting species in the Strictipile clade. Mycoscience 57:311–319

    Article  Google Scholar 

  8. Cui Y, Wang D, Chai Z-X, Li J-H, Yu B (2014) Biocontrol potential of Trichoderma rossicum:a species new to China. Acta Prataculturae Sinica 23:276–282 (in Chinese)

    Google Scholar 

  9. Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740

    Article  CAS  PubMed  Google Scholar 

  10. de Souza JT, Pomella AW, Bowers JH, Pirovani CP, Loguercio LL, Hebbar KP (2006) Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches’-broom pathogen. Phytopathology 96:61–67

    Article  PubMed  Google Scholar 

  11. Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  12. Harman GE (2000) Myths and dogmas of biocontrol-Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  13. Harman GE, Lorito M, Lynch J (2004) Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol 56:313

    Article  CAS  PubMed  Google Scholar 

  14. Harman GE (2006) Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  15. Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vagvolgyi C, Kredics L (2007) Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97:532–537

    Article  CAS  PubMed  Google Scholar 

  16. Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97:1365–1378

    Article  CAS  PubMed  Google Scholar 

  17. Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48:1–250

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol 80:1–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol 24:298–309

    Article  CAS  PubMed  Google Scholar 

  21. Klein D, Eveleigh D (1998) Ecology of Trichoderma. In: Kubicek C, Harman G (eds) Trichoderma and Gliocladium. Basic biology, taxonomy and genetics. Taylor and Francis Ltd, London, pp 57–73

    Google Scholar 

  22. Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767

    Article  CAS  Google Scholar 

  23. Loguercio LL, de Carvalho AC, Niella GR, De Souza JT, Villela Pomella AW (2009) Selection of Trichoderma stromaticum isolates for efficient biological control of witches’ broom disease in cacao. Biol Control 51:130–139

    Article  Google Scholar 

  24. Montoya QV, Meirelles LA, Chaverri P, Rodrigues A (2016) Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Anton Leeuw Int J G 109:633–651

    Article  Google Scholar 

  25. Nirenberg H (1976) Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt aus der Biol Bundesanst für Land- u Forstwirtsch, Berlin-Dahlem 169:1–117

    Google Scholar 

  26. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  27. Page R (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  28. Park MS, Bae KS, Yu SH (2006) Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34:111–113

    Article  PubMed  PubMed Central  Google Scholar 

  29. Persoon CH (1794) Dispositio methodica fungorum. Neues Magazin für die Botanik 1: 81–128

  30. Polanco R, Pino C, Besoain X, Montealegre J, Pérez LM (2015) Enhanced secretion of biocontrol enzymes by Trichoderma harzianum mutant strains in the presence of Rhizoctonia solani cell walls. Ciencia e Investigación Agraria 42:243–250

    Article  Google Scholar 

  31. Qin W-T, Zhuang W-Y (2016) Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions. Mycologia 108:205–214

    Article  CAS  PubMed  Google Scholar 

  32. Qin W-T, Zhuang W-Y (2016) Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep-UK 6:27074

    Article  CAS  Google Scholar 

  33. Qin W-T, Zhuang W-Y (2016) Four new species of Trichoderma with hyaline ascospores from central China. Mycol Prog 15:811–825

    Article  Google Scholar 

  34. Qin W-T, Chen K, Zhuang W-Y (2016) Five Trichoderma species new to China and notes on two other widespread species. Mycosystema 35:994–1007 (in Chinese)

    Google Scholar 

  35. Rifai MA (1969) Revision of the genus Trichoderma. Mycological Papers 116:1–56

    Google Scholar 

  36. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  37. Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Costa JC, Bezerra JL (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104:760–764

    Article  Google Scholar 

  38. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Article  PubMed  Google Scholar 

  39. Samuels GJ, Ismaiel A, de Souza J, Chaverri P (2012) Trichoderma stromaticum and its overseas relatives. Mycol Prog 11:215–254

    Article  Google Scholar 

  40. Sandoval-Denis M, Sutton DA, Cano-Lira JF, Gené J, Fothergill AW, Wiederhold NP, Guarro J (2014) Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 52:2112–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biot 87:787–799

    Article  CAS  Google Scholar 

  42. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  43. Sun R-Y, Liu Z-C, Fu K, Fan L, Chen J (2012) Trichoderma biodiversity in China. J Appl Genet 53:343–354

    Article  CAS  PubMed  Google Scholar 

  44. Swofford DL (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (* and other methods). Sunderland, Massachusetts: Sinauer Associates

  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Zhuang W-Y (2004) Designing primer sets for amplification of partial calmodulin genes from penicillia. Mycosystema 23:466–473

    CAS  Google Scholar 

  47. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  48. Zhu Z-X, Zhuang W-Y (2014) Two new species of Trichoderma (Hypocreaceae) from China. Mycosystema 33:1168–1174

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Long Wang for providing the soil samples from Sichuan, Dr. Gary Samuels for linguistic corrections and valuable suggestions, and Ms. Xia Song for technique assistance. This project was supported by the National Natural Science Foundation of China (No. 31570018) and Ministry of Science and Technology of China for Fundamental Research (No. 2013FY110400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ying Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zhuang, WY. Three New Soil-inhabiting Species of Trichoderma in the Stromaticum Clade with Test of Their Antagonism to Pathogens. Curr Microbiol 74, 1049–1060 (2017). https://doi.org/10.1007/s00284-017-1282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1282-2

Navigation