Advertisement

Current Microbiology

, Volume 74, Issue 1, pp 103–113 | Cite as

Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria

  • Natalia Pimentel Esposito-PolesiEmail author
  • Monita Fiori de Abreu-Tarazi
  • Cristina Vieira de Almeida
  • Siu Mui Tsai
  • Marcílio de Almeida
Article

Abstract

Asepsis, defined as the absence of microbial contamination, is one of the most important requirements of plant micropropagation. In long-term micropropagated cultures, there may occasionally occur scattered microorganism growth in the culture medium. These microorganisms are common plant components and are known as latent endophytes. Thus, the aim of this research was to investigate the presence of endophytic bacteria in asymptomatic pineapple and orchid microplants, which were cultivated in three laboratories for 1 year. Isolation and characterization of bacterial isolates, PCR–DGGE from total genomic DNA of microplants and ultrastructural analysis of leaves were performed. In the culture-dependent technique, it was only possible to obtain bacterial isolates from pineapple microplants. In this case, the bacteria genera identified in the isolation technique were Bacillus, Acinetobacter, and Methylobacterium. The scanning electron microscopy and transmission electron microscopy (SEM and TEM) analyses revealed the presence of endophytic bacteria in intracellular spaces in the leaves of pineapple and orchid microplants, independent of the laboratory or cultivation protocol. Our results strongly indicate that there are endophytic bacterial communities inhabiting the microplants before initiation of the in vitro culture and that some of these endophytes persist in their latent form and can also grow in the culture medium even after long-term micropropagation, thus discarding the concept of “truly axenic plants.”

Keywords

Transmission Electron Microscopy Micrographs Bacterial Colonization Endophytic Bacterium Intracellular Space Band Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the Fundação de Amparo a Pesquisa do Estado de São Paulo—FAPESP (Process No: 2008/07535-9) and CAPES for providing financial support. The authors also thank Elliot Kitajima and Francisco André Ossamu Tanaka (NAP/MEPA/ESALQ/USP) for use of the electronic microscope.

References

  1. 1.
    Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Org Cult 105:149–158CrossRefGoogle Scholar
  2. 2.
    Panicker B, Thomas P, Janakiram T, Venugopalan R, Narayanappa SB (2007) Influence of cytokinin levels on in vitro propagation of shy suckering chrysanthemum “Arka Swarna” and activation of endophytic bacteria. In Vitro Cell Dev Biol Plant 43:614–622CrossRefGoogle Scholar
  3. 3.
    Thomas P, Swarna GK, Roy PK, Prakash P (2008) Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv. Grand Naine. Plant Cell Tissue Org Cult 93:55–63CrossRefGoogle Scholar
  4. 4.
    Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M (2010) Endophytic bacteria in long-term in vitro cultivated ‘‘axenic’’ pineapple microplants revealed by PCR–DGGE. World J Microbiol Biotechnol 26:555–560CrossRefGoogle Scholar
  5. 5.
    Almeida CV, Andreote FD, Yara R, Tanaka FAO, Azevedo JL, Almeida M (2009) Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World J Microbiol Biotechnol 25:1757–1764CrossRefGoogle Scholar
  6. 6.
    Esposito-Polesi NP (2011) Microrganismos endofíticos e a cultura de tecidos vegetais: quebrando paradigmas. Revista Brasileira de Biociências 9:533–541Google Scholar
  7. 7.
    Esposito-Polesi NP, Andrade PAM, Almeida CV, Andreote FD, Almeida M (2015) Endophytic bacterial communities associated with two explant sources of Eucalyptus benthamii Maiden & Cambage. World J Microbiol Biotechnol 31:1737–1746CrossRefPubMedGoogle Scholar
  8. 8.
    Thomas P, Kumari S (2010) Inconspicuous endophytic bacteria mimicking latex exudates in shoot-tip cultures of papaya. Sci Hortic 124:469–474CrossRefGoogle Scholar
  9. 9.
    Misra P, Gupta N, Toppo DD, Pandey V, Mishra MK, Tuli R (2010) Establishment of long-term proliferating shoot cultures of elite Jatropha curcas L. by controlling endophytic bacterial contamination. Plant Cell Tissue Org Cult 100:189–197CrossRefGoogle Scholar
  10. 10.
    Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424CrossRefPubMedGoogle Scholar
  11. 11.
    Li YH, Zhu JN, Zhai ZH, Zhang QA (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84–93PubMedGoogle Scholar
  12. 12.
    Thomas P, Sekhar AC (2014) Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB Plants 6: plu002:1–12Google Scholar
  13. 13.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  14. 14.
    Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolality for use in eletron microscopy. J Cell Biol 27:137–138Google Scholar
  15. 15.
    Reynolds ES (1963) The use of lead citrat at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37CrossRefPubMedGoogle Scholar
  17. 17.
    Allen MM (1968) Simple conditions for growth of unicellular bluegreen algae on plates. J Phycol 4:1–4CrossRefPubMedGoogle Scholar
  18. 18.
    Stirling D (2003) DNA extraction from fungi, yeast, and bacteria. In: Bartlett JMS, Stirling D (eds) PCR protocols methods in molecular biology, vol 226. Humana Press, Totowa, pp 53–54CrossRefGoogle Scholar
  19. 19.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  21. 21.
    Araújo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263CrossRefPubMedGoogle Scholar
  23. 23.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  24. 24.
    Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241PubMedPubMedCentralGoogle Scholar
  25. 25.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  26. 26.
    Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197CrossRefPubMedGoogle Scholar
  27. 27.
    Davitt AJ, Chen C, Rudgers JA (2011) Understanding context-dependency in plant–microbe symbiosis: the influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environ Exp Bot 71:137–145CrossRefGoogle Scholar
  28. 28.
    Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefPubMedGoogle Scholar
  29. 29.
    Dong Z, Canny MJ, Mccully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodés R (1994) A nitrogen-fixing endophyte of sugarcane stems: a new role for the apoplast. Plant Physiol 105:139–1147CrossRefGoogle Scholar
  30. 30.
    Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Thomas P, Reddy KM (2013) Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana. AoB Plants 5:plt011CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Izumi H, Anderson IC, Killham K, Moore ER (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179CrossRefPubMedGoogle Scholar
  33. 33.
    Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952–964CrossRefPubMedGoogle Scholar
  34. 34.
    Bandara WMMS, Seneviratne G, Kulasooriya AS (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650CrossRefPubMedGoogle Scholar
  35. 35.
    Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In: Schulz BJE, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, New York, pp 153–178CrossRefGoogle Scholar
  36. 36.
    Gezgin Y, Eltem R (2009) Diversity of endophytic fungi from various Aegean and Mediterranean orchids (saleps). Turk J Bot 33:439–445Google Scholar
  37. 37.
    Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biot 76:1145–1152CrossRefGoogle Scholar
  38. 38.
    Thomas P, Kumari S, Swarna GK, Prakash DP, Dinesh MR (2007) Ubiquitous presence of fastidious endophytic bacteria in field shoots and index-negative apparently clean shoot-tip cultures of papaya. Plant Cell Rep 26:1491–1499CrossRefPubMedGoogle Scholar
  39. 39.
    Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micro propagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Natalia Pimentel Esposito-Polesi
    • 1
    Email author
  • Monita Fiori de Abreu-Tarazi
    • 1
  • Cristina Vieira de Almeida
    • 2
  • Siu Mui Tsai
    • 3
  • Marcílio de Almeida
    • 1
  1. 1.Biological Science Department, “Luiz de Queiroz” Superior College of AgricultureUniversity of São Paulo (ESALQ/USP)PiracicabaBrazil
  2. 2.In Vitro Palm Consultoria, Estudo e Desenvolvimento Biológico LtdaPiracicabaBrazil
  3. 3.Cell Biology and Molecular Laboratory, Nuclear Energy in Agriculture CenterUniversity of São PauloPiracicabaBrazil

Personalised recommendations