Current Microbiology

, Volume 73, Issue 6, pp 859–866 | Cite as

The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni

  • Amy Huei Teen Teh
  • Sui Mae Lee
  • Gary A. Dykes


Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

Supplementary material

284_2016_1134_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. 1.
    Aydin F, Atabay HI, Akan M (2001) The isolation and characterization of Campylobacter jejuni subsp. jejuni from domestic geese (Anser anser). J Appl Microbiol 90(4):637–642. doi:10.1046/j.1365-2672.2001.01293.x CrossRefPubMedGoogle Scholar
  2. 2.
    Baylis CL, MacPhee S, Martin KW, Humphrey TJ, Betts RP (2000) Comparison of three enrichment media for the isolation of Campylobacter spp. from foods. J Appl Microbiol 89(5):884–891. doi:10.1046/j.1365-2672.2000.01203.x CrossRefPubMedGoogle Scholar
  3. 3.
    Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JTM, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol 64(2):733–741PubMedPubMedCentralGoogle Scholar
  4. 4.
    Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226(5):1065–1073CrossRefGoogle Scholar
  5. 5.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. doi:10.1126/science.284.5418.1318 CrossRefPubMedGoogle Scholar
  6. 6.
    Duffy L, Dykes GA (2006) Growth temperature of four Campylobacter jejuni strains influences their subsequent survival in food and water. Lett Appl Microbiol 43(6):596–601. doi:10.1111/j.1472-765X.2006.02019.x CrossRefPubMedGoogle Scholar
  7. 7.
    Dykes G, Sampathkumar B, Korber D (2003) Planktonic or biofilm growth affects survival, hydrophobicity and protein expression patterns of a pathogenic Campylobacter jejuni strain. Int J Food Microbiol 89(1):1–10CrossRefPubMedGoogle Scholar
  8. 8.
    Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, Burrows LL (2005) Common β-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58(4):1012–1024CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ge B, White DG, McDermott PF, Girard W, Zhao S, Hubert S, Meng J (2003) Antimicrobial-resistant Campylobacter species from retail raw meats. Appl Environ Microbiol 69(5):3005–3007CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goulter RM, Gentle IR, Dykes GA (2010) Characterisation of curli production, cell surface hydrophobicity, autoaggregation and attachment behaviour of Escherichia coli O157. Curr Microbiol 61(3):157–162CrossRefPubMedGoogle Scholar
  11. 11.
    Gunther NWI, Chen CY (2009) The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol 26(1):44–51. doi:10.1016/ CrossRefPubMedGoogle Scholar
  12. 12.
    Hanning I, Jarquin R, Slavik M (2008) Campylobacter jejuni as a secondary colonizer of poultry biofilms. J Appl Microbiol 105(4):1199–1208. doi:10.1111/j.1365-2672.2008.03853.x CrossRefPubMedGoogle Scholar
  13. 13.
    Jacobs-Reitsma W, Lyhs U, Wagenaar J, Nachamkin I, Szymanski C, Blaser M (2008) Campylobacter in the food supply. Campylobacter (Ed. 3):627–644Google Scholar
  14. 14.
    Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152(2):387–396. doi:10.1099/mic.0.28358-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Kalmokoff M, Lanthier P, Tremblay T-L, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188(12):4312–4320. doi:10.1128/jb.01975-05 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Keener K, Bashor M, Curtis P, Sheldon B, Kathariou S (2004) Comprehensive review of Campylobacter and poultry processing. Compr Rev Food Sci Food Saf 3(2):105–116CrossRefGoogle Scholar
  17. 17.
    Kumar CG, Anand S (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27CrossRefPubMedGoogle Scholar
  18. 18.
    Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q (2009) Antibiotic resistance in Campylobacter: emergence, transmission and persistenceGoogle Scholar
  19. 19.
    Martínez-Rodriguez A, Kelly AF, Park SF, Mackey BM (2004) Emergence of variants with altered survival properties in stationary phase cultures of Campylobacter jejuni. Int J Food Microbiol 90(3):321–329CrossRefPubMedGoogle Scholar
  20. 20.
    May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53(11):4628–4639CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moser I, Schröder W (1997) Hydrophobic characterization of thermophilic Campylobacter species and adhesion to INT 407 cell membranes and fibronectin. Microb Pathog 22(3):155–164. doi:10.1006/mpat.1996.0104 CrossRefPubMedGoogle Scholar
  22. 22.
    Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Dahbi G, Blanco M, del Carmen Ponte M, Soriano F (2008) Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microb Pathog 45(2):86–91CrossRefPubMedGoogle Scholar
  23. 23.
    Nguyen VT, Turner MS, Dykes GA (2010) Effect of temperature and contact time on Campylobacter jejuni attachment to, and probability of detachment from, stainless steel. J Food Prot 73(5):832–838PubMedGoogle Scholar
  24. 24.
    Nguyen VT, Turner MS, Dykes GA (2011) Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces. Food Microbiol 28(5):942–950CrossRefPubMedGoogle Scholar
  25. 25.
    Nucleo E, Fugazza G, Migliavacca R, Spalla M, Comelli M, Pagani L, Debiaggi M (2010) Differences in biofilm formation and aggregative adherence between β-lactam susceptible and β-lactamases producing P. mirabilis clinical isolates. New Microbiol 33(1):37PubMedGoogle Scholar
  26. 26.
    Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73(6):1908–1913. doi:10.1128/aem.00740-06 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Reuter M, Mallett A, Pearson BM, van Vliet AHM (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76(7):2122–2128. doi:10.1128/aem.01878-09 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42(2):375–377PubMedPubMedCentralGoogle Scholar
  29. 29.
    Salloway S, Mermel LA, Seamans M, Aspinall GO, Nam Shin JE, Kurjanczyk LA, Penner JL (1996) Miller-Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect Immun 64(8):2945–2949PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sanders SQ, Boothe DH, Frank JF, Arnold JW (2007) Culture and detection of Campylobacter jejuni within mixed microbial populations of biofilms on stainless steel. J Food Prot 70(6):1379–1385PubMedGoogle Scholar
  31. 31.
    Skirrow MB (1994) Diseases due to Campylobacter, Helicobacter and related bacteria. J Comp Pathol 111(2):113–149CrossRefPubMedGoogle Scholar
  32. 32.
    Skyberg J, Siek K, Doetkott C, Nolan L (2007) Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny. J Appl Microbiol 102(2):548–554CrossRefPubMedGoogle Scholar
  33. 33.
    Solomon EB, Hoover DG (1999) Campylobacter jejuni: a bacterial paradox. J Food Saf 19(2):121–136. doi:10.1111/j.1745-4565.1999.tb00239.x CrossRefGoogle Scholar
  34. 34.
    Sommer P, Martin-Rouas C, Mettler E (1999) Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol 16(5):503–515CrossRefGoogle Scholar
  35. 35.
    Teh AHT, Lee SM, Dykes GA (2014) Does Campylobacter jejuni form biofilms in food-related environments? Appl Environ Microbiol 80(17):5154–5160CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Teh AHT, Lee SM, Dykes GA (2016) Draft genome sequences of three multiantibiotic-resistant Campylobacter jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia. Genome Announc. doi:10.1128/genomeA.00331-16 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Teh AHT, Wang Y, Dykes GA (2014) The influence of antibiotic resistance gene carriage on biofilm formation by two Escherichia coli strains associated with urinary tract infections. Can J Microbiol 60(2):105–111CrossRefPubMedGoogle Scholar
  38. 38.
    Turonova H, Briandet R, Rodrigues R, Hernould M, Hayek N, Stintzi A, Pazlarova J, Tresse O (2015) Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Frontiers in Microbiol 6Google Scholar
  39. 39.
    Wieczorek K, Dykes GA, Osek J, Duffy LL (2013) Antimicrobial resistance and genetic characterization of Campylobacter spp. from three countries. Food Control 34(1):84–91CrossRefGoogle Scholar
  40. 40.
    Young VB, Mansfield L (2005) Campylobacter infection-clinical context. Campylobacter: molecular and cellular biology horizon bioscience, Wymondham, Norfolk, UK:1–12Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of ScienceMonash UniversitySelangor Darul EhsanMalaysia
  2. 2.School of Public HealthCurtin UniversityBentleyAustralia

Personalised recommendations