Advertisement

Current Microbiology

, Volume 73, Issue 6, pp 827–833 | Cite as

Role of CgHOG1 in Stress Responses and Glycerol Overproduction of Candida glycerinogenes

  • Hao Ji
  • Bin Zhuge
  • Hong Zong
  • Xinyao Lu
  • Huiying Fang
  • Jian Zhuge
Article

Abstract

Candida glycerinogenes, the glycerol producer with excellent multi-stress tolerances, is considered to be a potential biotechnological host used in the production of glycerol and its derivatives under extreme fermentation conditions. In this study, to evaluate the multiple roles of mitogen-activated protein kinase CgHOG1, we constructed a gene disruption system in the diploid C. glycerinogenes to obtain CgHOG1 null mutant. Pseudohyphae generation of the CgHOG1 mutant under non-inducing condition indicated a repressor role in morphological transitions. Disruption of CgHOG1 resulted in increased sensitivities to osmotic, acetic acid, and oxidative stress but not involved in thermotolerance. In the CgHOG1 mutant, NaCl shock failed to stimulate the accumulation of intracellular glycerol and was fatal. In addition, the CgHOG1 mutant displayed a significant prolonged growth lag phase in YPD medium with no decrease in glycerol production, whereas the mutant cannot grow under hyperosmotic condition with no detectable glycerol in broth. These results suggested that CgHOG1 plays important roles in morphogenesis and multi-stress tolerance. The growth and glycerol overproduction under osmotic stress are heavily dependent on CgHOG1 kinase.

Keywords

Hyperosmotic Stress Glycerol Production Kluyveromyces Marxianus Hyperosmotic Shock Synthetic Dextrose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by China National “863” High-Tech Program (No. 2012AA021201) and supported by the National Natural Science Foundation of China (Nos. 31570052, 31601456), the Natural Science Foundation of Jiangsu Province (Nos. BK20140134, BK20140138), the Six Talent Peaks Project in Jiangsu Province (No. 2014-XCL-017), and the Fundamental Research Funds for the Central Universities (JUSRP11431). We thank Dr. Jiangye Chen (Chinese Academy of Sciences) for plasmid pCUB6.

References

  1. 1.
    Alepuz PM, Jovanovic A, Reiser V, Ammerer G (2001) Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol Cell 7(4):767–777CrossRefPubMedGoogle Scholar
  2. 2.
    Bouwman J, Kiewiet J, Lindenbergh A, van Eunen K, Siderius M, Bakker BM (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28(1):43–53CrossRefPubMedGoogle Scholar
  3. 3.
    Cheetham J, MacCallum DM, Doris KS, da Silva Dantas A, Scorfield S, Odds F, Smith DA, Quinn J (2011) MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J Biol Chem 286(49):42002–42016CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang Z, Zhuge J (2008) An efficient genetic transformation method for glycerol producer Candida glycerinogenes. Microbiol Res 163(5):531–537CrossRefPubMedGoogle Scholar
  5. 5.
    Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang Z, Zhuge J (2008) Cloning and characterization of a NAD+ -dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res 8(5):725–734CrossRefPubMedGoogle Scholar
  6. 6.
    Chen XZ, Fang HY, Rao ZM, Shen W, Zhuge B, Wang ZX, Zhuge J (2009) Comparative characterization of genes encoding glycerol 3-phosphate dehydrogenase from Candida glycerinogenes and Saccharomyces cerevisiae. Prog Biochem Biophys 36(2):198–205CrossRefGoogle Scholar
  7. 7.
    Eisman B, Alonso-Monge R, Roman E, Arana D, Nombela C, Pla J (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5(2):347–358CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17(2):1018–1032CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583(24):4025–4029CrossRefPubMedGoogle Scholar
  10. 10.
    Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61(3):373–382CrossRefPubMedGoogle Scholar
  11. 11.
    Ikner A, Shiozaki K (2005) Yeast signaling pathways in the oxidative stress response. Mutat Res 569(1):13–27CrossRefPubMedGoogle Scholar
  12. 12.
    Ji H, Lu X, Wang C, Zong H, Fang H, Sun J, Zhuge J, Zhuge B (2014) Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes. Curr Microbiol 69(6):909–914CrossRefPubMedGoogle Scholar
  13. 13.
    Kayingo G, Wong B (2005) The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology 151(9):2987–2999CrossRefPubMedGoogle Scholar
  14. 14.
    Kejzar A, Cibic M, Grotli M, Plemenitas A, Lenassi M (2015) The unique characteristics of HOG pathway MAPKs in the extremely halotolerant Hortaea werneckii. FEMS Microbiol Lett 362(8):fnv046CrossRefPubMedGoogle Scholar
  15. 15.
    Ko BS, Kim J, Kim JH (2006) Production of xylitol from D-xylose by Da xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72(6):4207–4213CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lu X, Wang Y, Zong H, Ji H, Zhuge B, Dong Z (2016) Bioconversion of l-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5. Bioengineering. doi: 10.1080/21655979.2016.1171437 Google Scholar
  17. 17.
    Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6(8):1274–1280CrossRefPubMedGoogle Scholar
  18. 18.
    Oliveira R, Lages F, Silva-Graça M, Lucas C (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. BBA-Biomembranes 1613(1–2):57–71CrossRefPubMedGoogle Scholar
  19. 19.
    Qian J, Qin X, Yin Q, Chu J, Wang Y (2011) Cloning and characterization of Kluyveromyces marxianus Hog1 gene. Biotechnol Lett 33(3):571–575CrossRefPubMedGoogle Scholar
  20. 20.
    Remize F, Cambon B, Bamavon L, Dequin S (2003) Glycerol formation during wine fermentation is mainly linked to Gpdlp and is only partially controlled by the the HOG pathway. Yeast 20:1243–1253CrossRefPubMedGoogle Scholar
  21. 21.
    Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289–318CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Song B, Zhuge B, Fang H, Zhuge J (2011) Analysis of the chromosome ploidy of Candida glycerinogenes. Wei Sheng Wu Xue Bao 51(3):326–331PubMedGoogle Scholar
  23. 23.
    Tulha J, Lima A, Lucas C, Ferreira C (2010) Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microb Cell Fact 9:82–89CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang C, Zong H, Zhuge B, Lu XY, Fang HY, Zhuge J (2015) Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in osmotolerant yeast, Candida glycerinogenes WL2002-5. J Ind Microbiol Biot 42(1):113–124CrossRefGoogle Scholar
  25. 25.
    Zhang C, Zong H, Zhuge B, Lu X, Fang H, Zhuge J (2015) Production of Xylitol from D-xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol 176(5):1511–1527CrossRefPubMedGoogle Scholar
  26. 26.
    Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL (2001) Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol 55(6):686–692CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hao Ji
    • 1
  • Bin Zhuge
    • 1
  • Hong Zong
    • 1
  • Xinyao Lu
    • 1
  • Huiying Fang
    • 1
  • Jian Zhuge
    • 1
  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations