Advertisement

Current Microbiology

, Volume 73, Issue 5, pp 721–726 | Cite as

Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations

  • Verónica Ambriz-Aviña
  • Ronald E. Yasbin
  • Eduardo A. Robleto
  • Mario Pedraza-ReyesEmail author
Article

Abstract

Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.

Keywords

Base Excision Repair Subtilis Cell Missense Allele Transcriptional Derepression Fluorescent Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT; Grants 205744 and 221231) of México and by the University of Guanajuato (Grants 936-2016 and 1090-2016). V. A–A was supported by a doctoral scholarship from CONACYT.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare no conflict of interest.

Supplementary material

284_2016_1122_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 87 kb)

References

  1. 1.
    Albertini AM, Galizzi A (1999) The sequence of the Trp operon of Bacillus subtilis 168 (trpC2) revisited. Microbiology 145:3319–3320CrossRefPubMedGoogle Scholar
  2. 2.
    Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M (2014) Applications of flow cytometry to characterize bacterial physiological responses. Biomed Res Int. doi: 10.1155/2014/461941 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Barajas-Ornelas RC, Ramírez-Guadiana FH, Juárez-Godínez R, Ayala-García VM, Robleto EA, Yasbin RE, Pedraza-Reyes M (2014) Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis. J Bacteriol 196:3012–3022CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cormack BP, Valdivia RH, Falkow S (1996) Facs-optimized mutants of the green fluorescent protein (Gfp). Gene 173:33–38CrossRefPubMedGoogle Scholar
  5. 5.
    Debora BN, Vidales LE, Ramírez R, Ramírez M, Robleto EA, Yasbin RE, Pedraza-Reyes M (2011) Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis. J Bacteriol 193:236–245CrossRefPubMedGoogle Scholar
  6. 6.
    Fraser D, Kaern M (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol Microbiol 71:1333–1340CrossRefPubMedGoogle Scholar
  7. 7.
    Jinks-Robertson S, Bhagwat AS (2014) Transcription-associated mutagenesis. Annu Rev Genet 48:341–359CrossRefPubMedGoogle Scholar
  8. 8.
    Kivisaar M (2003) Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5:814–827CrossRefPubMedGoogle Scholar
  9. 9.
    Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712CrossRefPubMedGoogle Scholar
  10. 10.
    López-Olmos K, Hernández MP, Contreras-Garduño JA, Robleto EA, Setlow P, Yasbin RE, Pedraza-Reyes M (2012) Roles of endonuclease V, uracil-DNA glycosylase, and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis. J Bacteriol 194:243–252CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA (2011) Transcriptional de-repression and mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 21:45–58CrossRefPubMedGoogle Scholar
  12. 12.
    McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM (2003) Transcription termination control of the s box system: direct measurement of s-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 100:3083–3088CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Millon-Weaver S, Samadpour NA, Moreno-Hable DA, Nugen P, Briinacher MJ, Weiss E, Hayden HS, Miller SI, Liachko I, Merrikh H (2015) An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci USA 112:E1096–E1105CrossRefGoogle Scholar
  14. 14.
    Morreall JF, Petrova L, Doetsch PW (2013) Transcriptional mutagenesis and its potential roles in the etiology of cancer and bacterial antibiotic resistance. J Cell Physiol 228:2257–2261CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pybus C, Pedraza-Reyes M, Ross CA, Martin H, Ona K, Yasbin RE, Robleto E (2010) Transcription-associated mutation in Bacillus subtilis cells under stress. J Bacteriol 192:3321–3328CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rainey PB, Beaumont HJ, Ferguson GC, Gallie J, Kost C, Libby E, Zhang XX (2011) The evolutionary emergence of stochastic phenotype switching in bacteria. Microb Cell Fact 10(Suppl 1):S14CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ramírez-Guadiana FH, Barajas-Ornelas RC, Ayala-García VM, Yasbin RE, Robleto E, Pedraza-Reyes M (2013) Transcriptional coupling of DNA repair in sporulating Bacillus subtilis cells. Mol Microbiol 90:1088–1099CrossRefPubMedGoogle Scholar
  18. 18.
    Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M (2007) Stationary Phase Mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 42:327–339CrossRefPubMedGoogle Scholar
  19. 19.
    Robleto E, Martin H, Vallin C, Pedraza-Reyes M, Yasbin R (2012) Transcription-mediated mutagenic processes. In: Mittelman D (ed) Stress induced mutagenesis. Springer Verlag, New York. p 41-58, ISBN 978-1-4614-6280-4Google Scholar
  20. 20.
    Sung HM, Yasbin RE (2002) Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J Bacteriol 184:5641–5653CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sung HM, Yeamans G, Ross CA, Yasbin RE (2003) Roles of yqjH and yqjW, homologs of the Escherichia coli umuC/dinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J Bacteriol 185:2153–2160CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vidales LE, Cárdenas Ll C, Robleto E, Yasbin RE, Pedraza-Reyes M (2009) Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 191:506–513CrossRefPubMedGoogle Scholar
  23. 23.
    Williams AB, Foster PL (2012) Stress-induced mutagenesis. Ecosal Plus 5(1)Google Scholar
  24. 24.
    Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ (2013) R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat Commun 4:2115. doi: 10.1038/ncomm53115 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wright BE (2000) A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol 182:2993–3001CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Verónica Ambriz-Aviña
    • 1
  • Ronald E. Yasbin
    • 3
  • Eduardo A. Robleto
    • 2
  • Mario Pedraza-Reyes
    • 1
    Email author
  1. 1.Department of Biology, Division of Natural and Exact SciencesUniversity of GuanajuatoGuanajuatoMexico
  2. 2.School of Life SciencesUniversity of NevadaLas VegasUSA
  3. 3.College of Arts and SciencesUniversity of Missouri-St LouisSt LouisUSA

Personalised recommendations