Advertisement

Current Microbiology

, Volume 73, Issue 3, pp 426–433 | Cite as

Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light

  • Grace F. GomezEmail author
  • Ruijie Huang
  • Meoghan MacPherson
  • Andrea G. Ferreira Zandona
  • Richard L. Gregory
Article

Abstract

Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380–440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12–16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

Keywords

Fructan Endogenous Porphyrin Fiber Optic Line Potent Antibacterial Effect Crystal Violet Staining Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are thankful for the support given by Ms. Sharon Gwinn. We would like to thank Mr. George J. Eckert for statistical support and Dr. Afnan Al-Zain for helpful discussions.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This was an in vitro study with no human or animal subjects.

References

  1. 1.
    Araujo NC, Fontana CR, Bagnato VS, Gerbi ME (2012) Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg 30(7):393–399. doi: 10.1089/pho.2011.3195 CrossRefPubMedGoogle Scholar
  2. 2.
    Ashkenazi H, Malik Z, Harth Y, Nitzan Y (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35(1):17–24CrossRefPubMedGoogle Scholar
  3. 3.
    Aveline BM, Sattler RM, Redmond RW (1998) Environmental effects on cellular photosensitization: correlation of phototoxicity mechanism with transient absorption spectroscopy measurements. Photochem Photobiol 68(1):51–62CrossRefPubMedGoogle Scholar
  4. 4.
    Avila M, Ojcius DM, Yilmaz O (2009) The oral microbiota: living with a permanent guest. DNA Cell Biol 28(8):405–411. doi: 10.1089/dna.2009.0874 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bratthall D (1972) Demonstration of Streptococcus mutans strains in some selected areas of the world. Odontol Revy 23(4):401–410PubMedGoogle Scholar
  6. 6.
    Chebath-Taub D, Steinberg D, Featherstone JD, Feuerstein O (2012) Influence of blue light on Streptococcus mutans re-organization in biofilm. J Photochem Photobiol B 116:75–78. doi: 10.1016/j.jphotobiol.2012.08.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Coulthwaite L, Pretty IA, Smith PW, Higham SM, Verran J (2006) The microbiological origin of fluorescence observed in plaque on dentures during QLF analysis. Caries Res 40(2):112–116. doi: 10.1159/000091056 CrossRefPubMedGoogle Scholar
  8. 8.
    Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27(2):221–226. doi: 10.1089/pho.2008.2413 CrossRefPubMedGoogle Scholar
  9. 9.
    Feuerstein O (2012) Light therapy: complementary antibacterial treatment of oral biofilm. Adv Dent Res 24(2):103–107. doi: 10.1177/0022034512449469 CrossRefPubMedGoogle Scholar
  10. 10.
    Feuerstein O, Moreinos D, Steinberg D (2006) Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans. J Antimicrob Chemother 57(5):872–876. doi: 10.1093/jac/dkl070 CrossRefPubMedGoogle Scholar
  11. 11.
    Ganz RA, Viveiros J, Ahmad A, Ahmadi A, Khalil A, Tolkoff MJ, Nishioka NS, Hamblin MR (2005) Helicobacter pylori in patients can be killed by visible light. Lasers Surg Med 36(4):260–265. doi: 10.1002/lsm.20161 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gomez GF, Eckert G, Zandona AF (2016) Orange/red fluorescence of active caries by retrospective QLF image analyses. Caries Res 50(3):295–302CrossRefGoogle Scholar
  13. 13.
    Guffey JS, Wilborn J (2006) In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 24(6):684–688. doi: 10.1089/pho.2006.24.684 CrossRefPubMedGoogle Scholar
  14. 14.
    Gursoy H, Ozcakir-Tomruk C, Tanalp J, Yilmaz S (2013) Photodynamic therapy in dentistry: a literature review. Clin Oral Investig 17(4):1113–1125. doi: 10.1007/s00784-012-0845-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44(2):331–384PubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang R, Li M, Gregory RL (2011) Bacterial interactions in dental biofilm. Virulence 2(5):435–444. doi: 10.4161/viru.2.5.16140 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang R, Li M, Gregory RL (2012) Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci 120(4):319–325. doi: 10.1111/j.1600-0722.2012.00971.x PubMedGoogle Scholar
  18. 18.
    Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86(8):694–707CrossRefPubMedGoogle Scholar
  19. 19.
    Liljemark WF, Bloomquist C (1996) Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med 7(2):180–198CrossRefPubMedGoogle Scholar
  20. 20.
    Loesche WJ, Rowan J, Straffon LH, Loos PJ (1975) Association of Streptococcus mutans with human dental decay. Infect Immun 11(6):1252–1260PubMedPubMedCentralGoogle Scholar
  21. 21.
    Maclean M, MacGregor SJ, Anderson JG, Woolsey G (2008) High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus. FEMS Microbiol Lett 285(2):227–232. doi: 10.1111/j.1574-6968.2008.01233.x CrossRefPubMedGoogle Scholar
  22. 22.
    Maclean M, MacGregor SJ, Anderson JG, Woolsey G (2009) Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75(7):1932–1937. doi: 10.1128/AEM.01892-08 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Malik Z, Hanania J, Nitzan Y (1990) Bactericidal effects of photoactivated porphyrins—an alternative approach to antimicrobial drugs. J Photochem Photobiol B 5(3–4):281–293CrossRefPubMedGoogle Scholar
  24. 24.
    Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38(3):204–211. doi: 10.1159/000077756 CrossRefPubMedGoogle Scholar
  25. 25.
    Marsh PD (2006) Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(Suppl 1):S14. doi: 10.1186/1472-6831-6-S1-S14 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marsh PD, Devine DA (2011) How is the development of dental biofilms influenced by the host? J Clin Periodontol 38(Suppl 11):28–35. doi: 10.1111/j.1600-051X.2010.01673.x CrossRefPubMedGoogle Scholar
  27. 27.
    Matosević DTZ, Miljanić S, Meić Z, Pichler G (2010) The detection of carious lesion porphyrins using violet laser induced fluorescence. Acta Stomatol Croat 44:232–240Google Scholar
  28. 28.
    Ogaard B, Seppa L, Rolla G (1994) Relationship between oral hygiene and approximal caries in 15-year-old Norwegians. Caries Res 28(4):297–300CrossRefPubMedGoogle Scholar
  29. 29.
    Papageorgiou P, Katsambas A, Chu A (2000) Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol 142(5):973–978CrossRefPubMedGoogle Scholar
  30. 30.
    Pereira CA, Costa AC, Carreira CM, Junqueira JC, Jorge AO (2013) Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med Sci 28(3):859–864. doi: 10.1007/s10103-012-1175-3 CrossRefPubMedGoogle Scholar
  31. 31.
    Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, Zanin IC, Rodrigues LK (2012) The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B 106:40–46. doi: 10.1016/j.jphotobiol.2011.10.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Ruby J, Goldner M (2007) Nature of symbiosis in oral disease. J Dent Res 86(1):8–11CrossRefPubMedGoogle Scholar
  33. 33.
    Socransky SS (1968) Microbial agents and production of oral diseases. J Dent Res 47(6):923–924CrossRefPubMedGoogle Scholar
  34. 34.
    Socransky SS, Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontology 2000(28):12–55CrossRefGoogle Scholar
  35. 35.
    Soukos NS, Goodson JM (2011) Photodynamic therapy in the control of oral biofilms. Periodontology 2000 55(1):143–166. doi: 10.1111/j.1600-0757.2010.00346.x CrossRefPubMedGoogle Scholar
  36. 36.
    Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, Doukas AG, Goodson JM (2005) Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 49(4):1391–1396. doi: 10.1128/AAC.49.4.1391-1396.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Steinberg D, Moreinos D, Featherstone J, Shemesh M, Feuerstein O (2008) Genetic and physiological effects of noncoherent visible light combined with hydrogen peroxide on Streptococcus mutans in biofilm. Antimicrob Agents Chemother 52(7):2626–2631. doi: 10.1128/AAC.01666-07 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRefPubMedGoogle Scholar
  39. 39.
    Tanzer JM, Wood WI, Krichevsky MI (1969) Linear growth kinetics of plaque-forming streptococci in the presence of sucrose. J Gen Microbiol 58(1):125–133. doi: 10.1099/00221287-58-1-125 CrossRefPubMedGoogle Scholar
  40. 40.
    ten Cate JM, Zaura E (2012) The numerous microbial species in oral biofilms: how could antibacterial therapy be effective? Adv Dent Res 24(2):108–111. doi: 10.1177/0022034512450028 CrossRefPubMedGoogle Scholar
  41. 41.
    van der Meulen FW, Ibrahim K, Sterenborg HJ, Alphen LV, Maikoe A, Dankert J (1997) Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins. J Photochem Photobiol B 40(3):204–208CrossRefPubMedGoogle Scholar
  42. 42.
    Williams RE (1973) Benefit and mischief from commensal bacteria. J Clin Pathol 26(11):811–818CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wilson M (1993) Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. J Appl Bacteriol 75(4):299–306CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Grace F. Gomez
    • 1
    Email author
  • Ruijie Huang
    • 1
    • 2
  • Meoghan MacPherson
    • 3
  • Andrea G. Ferreira Zandona
    • 4
  • Richard L. Gregory
    • 1
  1. 1.Department of Biomedical and Applied SciencesIndiana University School of DentistryIndianapolisUSA
  2. 2.Department of Pediatric Dentistry, West China School of StomatologySichuan UniversityChengduChina
  3. 3.Department of Bioengineering, College of EngineeringTemple UniversityPhiladelphiaUSA
  4. 4.Department of Operative DentistryThe University of North Carolina at Chapel Hill - School of DentistryChapel HillUSA

Personalised recommendations