Current Microbiology

, Volume 73, Issue 3, pp 409–418 | Cite as

Characterization and Complete Genome Sequences of Three N4-Like Roseobacter Phages Isolated from the South China Sea

  • Baolian Li
  • Si Zhang
  • Lijuan LongEmail author
  • Sijun HuangEmail author


Three bacteriophages (RD-1410W1-01, RD-1410Ws-07, and DS-1410Ws-06) were isolated from the surface water of Sanya Bay, northern South China Sea, on two marine bacteria type strains of the Roseobacter lineage. These phages have an isometric head and a short tail, morphologically belonging to the Podoviridae family. Two of these phages can infect four of seven marine roseobacter strains tested and the other one can infect three of them, showing relatively broader host ranges compared to known N4-like roseophages. One-step growth curves showed that these phages have similar short latent periods (1–2 h) but highly variable burst sizes (27–341 pfu cell−1). Their complete genomes show high level of similarities to known N4-like roseophages in terms of genome size, G + C content, gene content, and arrangement. The morphological and genomic features of these phages indicate that they belong to the N4likevirus genus. Moreover, comparative genomic analysis based on 43 N4-like phages (10 roseobacter phages and 33 phages infecting other lineages of bacteria) revealed a core genome of 18 genes shared by all the 43 phages and 38 genes shared by all the ten roseophages. The 38 core genes of N4-like roseophages nearly make up 70 % of each genome in length. Phylogenetic analysis based on the concatenated core gene products showed that our phage isolates represent two new phyletic branches, suggesting the broad genetic diversity of marine N4-like roseophages remains.


Core Gene Core Genome Burst Size Iodixanol Phage Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our colleagues at the CAS Tropical Marine Biological Research Station in Hainan for their help in sampling. We also thank Li Yinyin at Sun Yat-sen University for her assistance in TEM. This work was supported by the NSFC grants 41576126 (SH), 41206131 (SH), and 41230962 (SZ).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

284_2016_1071_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 34 kb)


  1. 1.
    Angly F, Youle M, Nosrat B et al (2009) Genomic analysis of multiple Roseophage SIO1 strains. Environ Microbiol 11(11):2863–2873CrossRefPubMedGoogle Scholar
  2. 2.
    Ankrah NY, Budinoff CR, Wilson WH et al (2014) Genome sequence of the Sulfitobacter sp. strain 2047-infecting lytic phage ΦCB2047-B. Genome Announc 2(1):e00945-00913CrossRefGoogle Scholar
  3. 3.
    Ankrah NY, Budinoff CR, Wilson WH et al (2014) Genome sequences of two temperate phages, ΦCB2047-A and ΦCB2047-C, infecting Sulfitobacter sp. strain 2047. Genome Announc 2(3):e00108-00114CrossRefGoogle Scholar
  4. 4.
    Breitbart M, Thompson LR, Suttle CA et al (2007) Exploring the vast diversity of marine viruses. Oceanography 20(2):135–139CrossRefGoogle Scholar
  5. 5.
    Cai L, Yang Y, Jiao N et al (2015) Complete genome sequence of vB_DshP-R2C, a N4-like lytic roseophage. Mar Genomics 22:15–17CrossRefPubMedGoogle Scholar
  6. 6.
    Chan JZ, Millard AD, Mann NH et al (2014) Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes. Front Microbiol 5(506):506PubMedPubMedCentralGoogle Scholar
  7. 7.
    Holmfeldt K, Howard-Varona C, Solonenko N et al (2014) Contrasting genomic patterns and infection strategies of two co-existing Bacteroidetes podovirus genera. Environ Microbiol 16(8):2501–2513CrossRefPubMedGoogle Scholar
  8. 8.
    Huang S, Zhang S, Jiao N et al (2015) Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One 10(11):e0142962CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang S, Zhang Y, Chen F et al (2011) Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria. Virol J 8:124CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ji J, Zhang R, Jiao N (2014) Complete genome sequence of Roseophage vB_DshP-R1, which infects Dinoroseobacter shibae DFL12. Stand Genomic Sci 9:31PubMedGoogle Scholar
  11. 11.
    Kang I, Jang H, Oh HM et al (2012) Complete genome sequence of Celeribacter bacteriophage P12053L. J Virol 86(15):8339–8340CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23(8):1026–1028CrossRefPubMedGoogle Scholar
  13. 13.
    Labrie SJ, Frois-Moniz K, Osburne MS et al (2013) Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol 15(5):1356–1376CrossRefPubMedGoogle Scholar
  14. 14.
    Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefPubMedGoogle Scholar
  15. 15.
    Liang Y, Zhang Y, Zhou C et al (2016) Complete genome sequence of the siphovirus Roseophage RDJLPhi 2 infecting Roseobacter denitrificans OCh114. Mar Genomics 25:17–19CrossRefPubMedGoogle Scholar
  16. 16.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26(4):1107–1115CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Newton RJ, Griffin LE, Bowles KM et al (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4(6):784–798CrossRefPubMedGoogle Scholar
  19. 19.
    Rohwer F, Segall A, Steward G et al (2000) The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanogr 45(2):408–418CrossRefGoogle Scholar
  20. 20.
    Suttle CA (2005) Viruses in the sea. Nature 437(7057):356–361CrossRefPubMedGoogle Scholar
  21. 21.
    Suttle CA (2007) Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812CrossRefPubMedGoogle Scholar
  22. 22.
    Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577CrossRefPubMedGoogle Scholar
  23. 23.
    Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wagner-Dobler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280CrossRefPubMedGoogle Scholar
  25. 25.
    Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181CrossRefPubMedGoogle Scholar
  26. 26.
    Wittmann J, Klumpp J, Moreno Switt AI et al (2015) Taxonomic reassessment of N4-like viruses using comparative genomics and proteomics suggests a new subfamily—“Enquartavirinae”. Arch Virol 160(12):3053–3062CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao Y, Wang K, Jiao N et al (2009) Genome sequences of two novel phages infecting marine roseobacters. Environ Microbiol 11(8):2055–2064CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.CAS Key Laboratory of Tropical Marine Bio-resources and EcologySouth China Sea Institute of Oceanology, Chinese Academy of ScienceGuangzhouChina
  2. 2.Graduate University of CASBeijingChina

Personalised recommendations