Advertisement

Current Microbiology

, Volume 73, Issue 2, pp 287–291 | Cite as

Bactericidal and Fungicidal Activity in the Gas Phase of Sodium Dichloroisocyanurate (NaDCC)

  • Antonio Proto
  • Ilaria Zarrella
  • Raffaele Cucciniello
  • Concetta Pironti
  • Francesco De Caro
  • Oriana Motta
Letter to the Editor
  • 235 Downloads

Abstract

Sodium dichloroisocyanurate (NaDCC) is usually employed as a disinfectant for the treatment of water, environmental surfaces and medical equipment principally for its effectiveness as a microbicide agent. In this study, we explore the possibility of a new use for NaDCC by investigating the microbicidal activity of chlorine, which derives from the hydrolysis of NaDCC mediated by air humidity, and by testing its effect on the neutralization of microbes present in domestic waste. NaDCC was inserted in a plastic garbage can where LB agar plates, with different dilutions of a known title of four different microorganisms (Escherichia coli, Staphylococcus aureus, Debaryomyces hansenii and Aspergillus brasiliensis), were weakly inserted. The molecular chlorine (Cl2) levels present in the garbage can were quantified using an iodometric titration. The gas emitted in the garbage can presented a strong microbicide effect, inhibiting the proliferation of all four microorganisms and for four consecutive weeks, thus showing that NaDCC hydrolysis, mediated by air humidity, is able to ensure the decontamination of restricted environments, avoiding the proliferation of both Gram-positive and Gram-negative bacteria as well as fungi.

Keywords

NaDCC Decontamination Waste management Microbicide agent Gas phase Molecular chlorine 

Notes

Acknowledgments

This work was financially supported by Cleprin srl (Sessa Aurunca, CE, Italy) and by Fondi di Ateneo per la Ricerca di Base (FARB 2013), University of Salerno (Fisciano, SA, Italy). We would also like to thank Luciana Borrelli for her accurate scientific editing service (www.thesmartoctopus.com).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Alleron L, Merlet N, Lacombe C, Frere J (2008) Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 57:497–502. doi: 10.1007/s00284-008-9275-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Block SS (ed) (2001) Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins, Philadelphia. doi: 10.1111/j.1365-2672.1979.tb02582.x Google Scholar
  3. 3.
    Bloomfield S, Miles G (1979) Antibacerial properties of sodium dichloroisocyanurate and sodium-hypochlorite formulation. J Appl Bacteriol 46:65–73. doi: 10.1111/j.1365-2672.1979.tb02582.x CrossRefPubMedGoogle Scholar
  4. 4.
    Bloomfield S, Uso E (1985) The antibacterial properties of sodium-hypochlorite and sodium dichloroisocyanurate as hospital disinfectant. J Hosp Infect 6:20–30. doi: 10.1016/S0195-6701(85)80014-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Clasen T, Edmondson P (2006) Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int J Hyg Environ Health 209:173–181. doi: 10.1016/j.ijheh.2005.11.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Coates D (1996) Sporicidal activity of sodium dichloroisocyanurate, peroxygen and glutaraldehyde disinfectants against Bacillus subtilis. J Hosp Inf 32(4):283–294CrossRefGoogle Scholar
  7. 7.
    Connell G, Routt J, Macler B, Andrews R (2000) Committee report: disinfection at large and medium-size systems. Am Water Works Assoc J 92:32Google Scholar
  8. 8.
    Dancer SJ (2009) The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect 73:378–385. doi: 10.1016/j.jhin.2009.03.030 CrossRefPubMedGoogle Scholar
  9. 9.
    Gall AM, Shisler JL, Marinas BJ (2015) Analysis of the viral replication cycle of adenovirus serotype 2 after inactivation by free chlorine. Environ Sci Technol 49:4584–4590. doi: 10.1021/acs.est.5b00301 CrossRefPubMedGoogle Scholar
  10. 10.
    Hoffman P, Death J, Coates D (1981) The stability of sodium hypochlorite solutions. In: Collins CH, Allwood MC, Bloomfield SF, Fox A (eds) Disinfectants: their use and evaluation of effectiveness. Academic Press Ltd, London, pp 77–83Google Scholar
  11. 11.
    Jedlicka SS, Stravitz DM, Lyman CE (2012) Airborne microorganisms from waste containers. Ind Health 50:548–555CrossRefPubMedGoogle Scholar
  12. 12.
    Kagan L, Aiello A, Larson E (2002) The role of the home environment in the transmission of infectious diseases. J Commun Health 27(4):247–267. doi: 10.1023/A:1016378226861 CrossRefGoogle Scholar
  13. 13.
    Kaye S, Graham R, McCarthy K, Green J, Damjanovic V, Austin M (1991) Reducing disinfection wastage. Eye 5(1):120–123CrossRefPubMedGoogle Scholar
  14. 14.
    Khunkitti W, Lloyd D, Furr J, Russell A (1996) The lethal effects of biguanides on cysts and trophozoites of Acanthamoeba castellanii. J Appl Bacteriol 81(1):73–77CrossRefPubMedGoogle Scholar
  15. 15.
    Larson E, Lin S, Gomez-Pichardo C, Della-Latta P (2004) Effect of antibacterial home cleaning and handwashing products on infectious disease symptoms: a randomized, double-blind trial. Ann Intern Med 140:321–329CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Martin M, Gallagher M (2005) An investigation of the efficacy of super–oxidised (Optident/Sterilox) water for the disinfection of dental unit water lines. Br Dent J 198:353–354. doi: 10.1038/sj.bdj.4812174 CrossRefPubMedGoogle Scholar
  17. 17.
    Martin N, Martin MV, Jedynakiewicz NM (2007) The dimensional stability of dental impression materials following immersion in disinfecting solutions. Dent Mater 23:760–768. doi: 10.1016/j.dental.2007.01.04 CrossRefPubMedGoogle Scholar
  18. 18.
    McDonnell G, Russell A (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147+PubMedPubMedCentralGoogle Scholar
  19. 19.
    Motta O, Zarrella I, Cucciniello R, Vigliotta G, Proto A (2015) Study of the antibacterial activity in the gas phase of a chemical formulation for household waste management. Lett Appl Microbiol 60:223–228. doi: 10.1111/lam.12360 CrossRefPubMedGoogle Scholar
  20. 20.
    Rossi-Fedele G, Guastalli AR, Dogramaci EJ, Steier L, De Figueiredo JAP (2011) Influence of pH changes on chlorine-containing endodontic irrigating solutions. Int Endod J 44:792–799. doi: 10.1111/j.1365-2591.2011.01911.x CrossRefPubMedGoogle Scholar
  21. 21.
    Rutala W, Weber D (1997) Uses of inorganic hypochlorite (bleach) in health-care facilities. Clin Microbiol Rev 10:597PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sattar S, Tetro J, Springthorpe V (1999) Impact of changing societal trends on the spread of infections in American and Canadian homes. Am J Infect Control 27:S4–S21CrossRefPubMedGoogle Scholar
  23. 23.
    Umezawa K, Asai S, Inokuchi S, Miyachi HA (2012) Comparative study of the bactericidal activity and daily disinfection housekeeping surfaces by a new portable pulsed UV radiation device. Curr Microbiol 64:581–587. doi: 10.1016/j.jhin.2009.03.030 CrossRefPubMedGoogle Scholar
  24. 24.
    Zehnder M (2006) Root canal irrigants. J Endod 32:389–398. doi: 10.1016/j.joen.2005.09.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Antonio Proto
    • 1
  • Ilaria Zarrella
    • 2
  • Raffaele Cucciniello
    • 1
  • Concetta Pironti
    • 1
  • Francesco De Caro
    • 2
  • Oriana Motta
    • 2
  1. 1.Department of Chemistry and BiologyUniversity of SalernoFiscianoItaly
  2. 2.Department of Medicine and SurgeryUniversity of SalernoBaronissiItaly

Personalised recommendations