Skip to main content
Log in

Carotenoid Production by Halophilic Archaea Under Different Culture Conditions

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asker D, Awad T, Ohta Y (2002) Lipids of Haloferax alexandrinus strain TMT: an extremely halophilic canthaxanthin-producing archaeon. J Biosci Bioeng 93:37–43. doi:10.1016/s1389-1723(02)80051-2

    Article  CAS  PubMed  Google Scholar 

  2. Asker D, Ohta Y (1999) Production of canthaxanthin by extremely halophilic bacteria. J Biosci Bioeng 88:617–621. doi:10.1016/s1389-1723(00)87089-9

    Article  CAS  PubMed  Google Scholar 

  3. Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750. doi:10.1007/s00253-002-0967-y

    Article  CAS  PubMed  Google Scholar 

  4. Ávalos J, Bejarano ER, Cerdá-Olmedo E (1993) Photoinduction of carotenoid biosynthesis. In: Lester P (ed) Methods in enzymology: carotenoids (Part B: metabolism, genetics and biosynthesis). Academic Press, San Diego, pp 283–294

    Chapter  Google Scholar 

  5. Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361. doi:10.1007/s00253-003-1441-1

    Article  CAS  PubMed  Google Scholar 

  6. Bidle KA, Hanson TE, Howell K, Nannen J (2007) HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii. Extremophiles 11:49–55. doi:10.1007/s00792-006-0008-3

    Article  CAS  PubMed  Google Scholar 

  7. Bowers K, Wiegel J (2011) Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles 15:119–128. doi:10.1007/s00792-010-0347-y

    Article  CAS  PubMed  Google Scholar 

  8. Britton G (1995) UV/Visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Volume 1B: spectroscopy. Birkhäuser, Basel, pp 13–62

    Google Scholar 

  9. Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids today and challenges for the future. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Volume 1A: isolation and analysis. Birkhäuser, Basel, pp 13–26

    Google Scholar 

  10. Camacho-Córdova DI, Camacho-Ruíz RM, Córdova-López JA, Cervantes-Martínez J (2014) Estimation of bacterioruberin by Raman spectroscopy during the growth of halophilic archaeon Haloarcula marismortui. Appl Opt 53:7470–7475. doi:10.1364/AO.53.007470

    Article  PubMed  Google Scholar 

  11. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S (1997) Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun 239:85–90. doi:10.1006/bbrc.1997.7433

    Article  CAS  PubMed  Google Scholar 

  12. Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93:5–11. doi:10.1002/jsfa.5902

    Article  CAS  PubMed  Google Scholar 

  13. Cowan DA (1992) Biotechnology of the Archaea. Trends Biotechnol 10:315–323. doi:10.1016/0167-7799(92)90257-v

    Article  CAS  PubMed  Google Scholar 

  14. D’Souza SE, Altekar W, D’Souza SF (1997) Adaptive response of Haloferax mediterranei to low concentrations of NaCl (< 20%) in the growth medium. Arch Microbiol 168:68–71. doi:10.1007/s002030050471

    Article  PubMed  Google Scholar 

  15. Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 179:3146–3153

    CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Sayed WSM, Takaichi S, Saida H, Kamekura M, Abu-Shady M, Seki H, Kuwabara T (2002) Effects of light and low oxygen tension on pigment biosynthesis in Halobacterium salinarum, revealed by a novel method to quantify both retinal and carotenoids. Plant Cell Physiol 43:379–383. doi:10.1093/pcp/pcf044

    Article  CAS  PubMed  Google Scholar 

  17. Evans RW, Kushwaha SC, Kates M (1980) The lipids of Halobacterium marismortui, an extremely halophilic bacterium in the dead sea. Biochim Biophys Acta 619:533–544. doi:10.1016/0005-2760(80)90105-8

    Article  CAS  PubMed  Google Scholar 

  18. Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, Sv Gronau, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196. doi:10.1007/s00792-008-0138-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang C-J, Ku K-L, Lee M-H, Su N-W (2010) Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour Technol 101:6487–6493. doi:10.1016/j.biortech.2010.03.044

    Article  CAS  PubMed  Google Scholar 

  20. Fong NJC, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756. doi:10.1007/s002530100739

    Article  CAS  PubMed  Google Scholar 

  21. Gochnauer MB, Kushwaha SC, Kates M, Kushner DJ (1972) Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria. Arch Mikrobiol 84:339–349. doi:10.1007/bf00409082

    Article  CAS  Google Scholar 

  22. Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069. doi:10.1099/ijs.0.070136-0

    Article  CAS  PubMed  Google Scholar 

  23. Hamidi M, Abdin MZ, Nazemyieh H, Hejazi MA, Hejazi MS (2014) Optimization of total carotenoid production by Halorubrum sp. TBZ126 using response surface methodology. J Microb Biochem Technol 6:286–294. doi:10.4172/1948-5948.1000158

    Article  CAS  Google Scholar 

  24. Heider SAE, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T (2014) Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 98:4355–4368. doi:10.1007/s00253-014-5693-8

    Article  CAS  PubMed  Google Scholar 

  25. Hu Z-C, Zheng Y-G, Wang Z, Shen Y-C (2006) pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb Technol 39:586–590. doi:10.1016/j.enzmictec.2005.11.017

    Article  CAS  Google Scholar 

  26. Jehlička J, Edwards HGM, Oren A (2013) Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 106:99–103. doi:10.1016/j.saa.2012.12.081

    Article  PubMed  Google Scholar 

  27. Kaiser P, Geyer R, Surmann P, Fuhrmann H (2012) LC–MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 88:28–34. doi:10.1016/j.mimet.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Kelly M, Liaaen-Jensen S (1967) Bacterial carotenoids. XXVI. C50-carotenoids. 2. Bacterioruberin. Acta Chem Scand 21:2578–2580. doi:10.3891/acta.chem.scand.21-2578

    Article  CAS  PubMed  Google Scholar 

  29. Kelly M, Norgård S, Liaaen-Jensen S (1970) Bacterial carotenoids. XXXI. C50-carotenoids 5. Carotenoids of Halobacterium salinarum, especially bacterioruberin. Acta Chem Scand 24:2169–2182. doi:10.3891/acta.chem.scand.24-2169

    Article  CAS  PubMed  Google Scholar 

  30. Kushwaha SC, Gochnauer MB, Kushner DJ, Kates M (1974) Pigments and isoprenoid compounds in extremely and moderately halophilic bacteria. Can J Microbiol 20:241–245. doi:10.1139/m74-038

    Article  CAS  PubMed  Google Scholar 

  31. Kushwaha SC, Juez-Pérez G, Rodriguez-Valera F, Kates M, Kushner DJ (1982) Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Can J Microbiol 28:1365–1372. doi:10.1139/m82-203

    Article  CAS  Google Scholar 

  32. Kushwaha SC, Kates M (1979) Effect of glycerol on carotenogenesis in the extreme halophile, Halobacterium cutirubrum. Can J Microbiol 25:1288–1291. doi:10.1139/m79-203

    Article  CAS  PubMed  Google Scholar 

  33. Kushwaha SC, Kramer JKG, Kates M (1975) Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. Biochim Biophys Acta 398:303–314. doi:10.1016/0005-2760(75)90146-0

    Article  CAS  PubMed  Google Scholar 

  34. Kushwaha SC, Pugh EL, Kramer JKG, Kates M (1972) Isolation and identification of dehydrosqualene and C40-carotenoid pigments in Halobacterium cutirubrum. Biochim Biophys Acta 260:492–506. doi:10.1016/0005-2760(72)90064-1

    Article  CAS  PubMed  Google Scholar 

  35. Lazrak T, Wolff G, Albrecht A-M, Nakatani Y, Ourisson G, Kates M (1988) Bacterioruberins reinforce reconstituted Halobacterium lipid membranes. Biochim Biophys Acta 939:160–162. doi:10.1016/0005-2736(88)90057-0

    Article  CAS  Google Scholar 

  36. Liu Y-S, Wu J-Y, K-p Ho (2006) Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem Eng J 27:331–335. doi:10.1016/j.bej.2005.08.031

    Article  Google Scholar 

  37. Lobasso S, Lopalco P, Mascolo G, Corcelli A (2008) Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi. Archaea 2:177–183. doi:10.1155/2008/870191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorantfy B, Renkecz T, Koch C, Horvai G, Lendl B, Herwig C (2014) Identification of lipophilic bioproduct portfolio from bioreactor samples of extreme halophilic archaea with HPLC-MS/MS. Anal Bioanal Chem 406:2421–2432. doi:10.1007/s00216-014-7626-x

    Article  CAS  PubMed  Google Scholar 

  39. Luna-Flores CH, Ramírez-Cordova JJ, Pelayo-Ortiz C, Femat R, Herrera-López EJ (2010) Batch and fed-batch modeling of carotenoids production by Xanthophyllomyces dendrorhous using Yucca fillifera date juice as substrate. Biochem Eng J 53:131–136. doi:10.1016/j.bej.2010.10.004

    Article  CAS  Google Scholar 

  40. Madigan MT, Martinko JM, Stahl DA, Clark DP (2012) Archaea. In: Madigan MT, Martinko JM, Stahl DA, Clark DP (eds) Brock biology of microorganisms, 13th edn. Pearson Benjamin Cummings, San Francisco, pp 556–583

    Google Scholar 

  41. Madigan MT, Martinko JM, Stahl DA, Clark DP (2012) Cell structure and function in Bacteria and Archaea. In: Madigan MT, Martinko JM, Stahl DA, Clark DP (eds) Brock biology of microorganisms, 13th edn. Pearson Benjamin Cummings, San Francisco, pp 47–84

    Google Scholar 

  42. Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP (2008) Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chem 107:145–150. doi:10.1016/j.foodchem.2007.07.075

    Article  CAS  Google Scholar 

  43. Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ (2012) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol 28:1781–1790. doi:10.1007/s11274-011-0993-y

    Article  CAS  PubMed  Google Scholar 

  44. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manage 95:S338–S342. doi:10.1016/j.jenvman.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  45. Matsumi R, Atomi H, Driessen AJM, Jvd Oost (2011) Isoprenoid biosynthesis in Archaea – biochemical and evolutionary implications. Res Microbiol 162:39–52. doi:10.1016/j.resmic.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Oren A (2002) Biotechnological applications and potentials of halophilic microorganisms. In: Oren A (ed) Halophilic microorganisms and their environments. Kluwer, Netherlands, pp 357–388

    Chapter  Google Scholar 

  47. Oren A (2002) Pigments of halophilic microorganisms. In: Oren A (ed) Halophilic microorganisms and their environments. Kluwer, Netherlands, pp 173–206

    Chapter  Google Scholar 

  48. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:1–13. doi:10.1186/1746-1448-4-2

    Article  Google Scholar 

  49. Papaioannou EH, Liakopoulou-Kyriakides M (2010) Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food Bioprod Process 88:305–311. doi:10.1016/j.fbp.2009.03.001

    Article  CAS  Google Scholar 

  50. Pfander H (1994) C45- and C50-carotenoids. Pure Appl Chem 66:2369–2374. doi:10.1351/pac199466102369

    CAS  Google Scholar 

  51. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. doi:10.1007/s00253-009-2397-6

    Article  PubMed  Google Scholar 

  52. Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 1224:1–10. doi:10.1016/j.chroma.2011.12.025

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1980) Short communication: isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119:535–538. doi:10.1099/00221287-119-2-535

    Google Scholar 

  54. Rønnekleiv M, Lenes M, Norgård S, Liaaen-Jensen S (1995) Three dodecaene C50-carotenoids from halophilic bacteria. Phytochemistry 39:631–634. doi:10.1016/0031-9422(95)00975-d

    Article  Google Scholar 

  55. Rønnekleiv M, Liaaen-Jensen S (1992) Bacterial carotenoids. 52. C50-carotenoids. 22. Naturally occurring geometrical isomers of bacterioruberin. Acta Chem Scand 46:1092–1095. doi:10.3891/acta.chem.scand.46-1092

    Article  Google Scholar 

  56. Rønnekleiv M, Liaaen-Jensen S (1995) Bacterial carotenoids 53, C50-carotenoids 23; Carotenoids of Haloferax volcanii versus other halophilic bacteria. Biochem Syst Ecol 23:627–634. doi:10.1016/0305-1978(95)00047-x

    Article  Google Scholar 

  57. Saito T, Terato H, Yamamoto O (1994) Pigments of Rubrobacter radiotolerans. Arch Microbiol 162:414–421. doi:10.1007/s002030050159

    Article  CAS  Google Scholar 

  58. Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Volume 1A: isolation and analysis. Birkhäuser, Basel, pp 81–108

    Google Scholar 

  59. Schiraldi C, Giuliano M, De Rosa M (2002) Perspectives on biotechnological applications of archaea. Archaea 1:75–86. doi:10.1155/2002/436561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh OV, Gabani P (2011) Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol 110:851–861. doi:10.1111/j.1365-2672.2011.04971.x

    Article  CAS  PubMed  Google Scholar 

  61. Stanbury PF, Whitaker A, Hall SJ (1995) Aeration and agitation. In: Stanbury PF, Whitaker A, Hall SJ (eds) Principles of fermentation technology. Pergamon, Amsterdam, pp 243–275

    Chapter  Google Scholar 

  62. Stiehl T, Rullkötter J, Nissenbaum A (2005) Molecular and isotopic characterization of lipids in cultured halophilic microorganisms from the Dead Sea and comparison with the sediment record of this hypersaline lake. Org Geochem 36:1242–1251. doi:10.1016/j.orggeochem.2005.05.002

    Article  CAS  Google Scholar 

  63. Sui L, Liu L, Deng Y (2014) Characterization of halophilic C50 carotenoid-producing archaea isolated from solar saltworks in Bohai Bay, China. Chin J Ocean Limnol 32:1280–1287. doi:10.1007/s00343-015-4033-x

    Article  CAS  Google Scholar 

  64. Tada M (1993) Methods for investigating photoregulated carotenogenesis. In: Lester P (ed) Methods in enzymology: carotenoids (Part B: metabolism, genetics and biosynthesis). Academic Press, San Diego, pp 269–283

    Chapter  Google Scholar 

  65. Tornabene TG, Kates M, Gelpi E, Oro J (1969) Occurrence of squalene, di- and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium, Halobacterium cutirubrum. J Lipid Res 10:294–303

    CAS  PubMed  Google Scholar 

  66. van Breemen RB, Dong L, Pajkovic ND (2012) Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom 312:163–172. doi:10.1016/j.ijms.2011.07.030

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol 197:1614–1623. doi:10.1128/jb.02523-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the National Council for the Improvement of Higher Education (CAPES), a Brazilian governmental agency, and the Pharmaceutical Sciences Post-graduation Program, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Maria Bordin Bonfim.

Ethics declarations

Conflict of Interest

The authors declare that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calegari-Santos, R., Diogo, R.A., Fontana, J.D. et al. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions. Curr Microbiol 72, 641–651 (2016). https://doi.org/10.1007/s00284-015-0974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0974-8

Keywords

Navigation