Advertisement

Current Microbiology

, Volume 72, Issue 3, pp 337–343 | Cite as

Application of Differential Proteomic Analysis to Authenticate Ophiocordyceps sinensis

  • Shiwei Zhang
  • Xintian Lai
  • Bifang Li
  • Cong Wu
  • Shifeng Wang
  • Xuejian Chen
  • Jingmin Huang
  • Guowu Yang
Article

Abstract

Ophiocordyceps sinensis (Berk.) Sacc. is one of the most well-known fungi in traditional Chinese medicine and is attracting attention because of its nutritious and medicinal properties. The present study aimed to produce a proteomic map to identify common O. sinensis proteins. The caterpillar body and stroma of O. sinensis collected from five locations and four fungal specimens of similar appearance were examined by two-dimensional electrophoresis (2-DE). Five proteins were identified using MALDI-TOF-–TOF/MS, and the 2-DE identification pattern was provided. OCS_04585 and β-lactamase domain-containing protein, the two abundant and characteristic proteins, were separated and purified using liquid-phase isoelectric focusing. The products were high-quality materials that can be used for future protein-function studies and immunoassay development.

Keywords

Internal Transcribe Spacer Protein Spot Peptide Mass Fingerprint NCBI Protein Database Total Saccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145(3):875–889PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Dong YZ, Zhang LJ, Wu ZM, Gao L, Yao YS, Tan NZ, Wu JY, Ni L, Zhu JS (2014) Altered proteomic polymorphisms in the caterpillar body and stroma of natural Cordyceps sinensis during maturation. PLoS One 9(10):e109083PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? J Zhejiang Univ Sci B 9:842–846PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Jiang Y, Yao Y (2002) Anamorphic fungi related to Cordyceps sinensis. Mycosystema 22(1):161–176Google Scholar
  5. 5.
    Jin GS, Wang XL, Li Y, Wang WJ, Yang RH, Ren SY, Yao YJ (2013) Development of conventional and nested PCR assays for the detection of Ophiocordyceps sinensis. J Basic Microbiol 53(4):340–347CrossRefPubMedGoogle Scholar
  6. 6.
    Ji NF, Yao LS, Li Y, He W, Yi KS, Huang M (2011) Polysaccharide of Cordyceps sinensis enhances cisplatin cytotoxicity in non-small cell lung cancer H157 cell line. Integr Cancer Ther 10(4):359–367CrossRefPubMedGoogle Scholar
  7. 7.
    Katayama H, Nagasu T, Oda Y (2001) Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15(16):1416–1421CrossRefPubMedGoogle Scholar
  8. 8.
    Li SP, Li P, Dong TT, Tsim KW (2001) Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine 8(3):207–212CrossRefPubMedGoogle Scholar
  9. 9.
    Lei W, Li S, Peng Q, Zhang G, Liu X (2013) A real-time qPCR assay to quantify Ophiocordyceps sinensis biomass in Thitarodes larvae. J Microbiol 51(2):229–233CrossRefPubMedGoogle Scholar
  10. 10.
    Miner-Williams W, Moughan PJ, Fuller MF (2009) Methods for mucin analysis: a comparative study. J Agric Food Chem 57(14):6029–6035CrossRefPubMedGoogle Scholar
  11. 11.
    Ng TB, Wang HX (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 57(12):1509–1519CrossRefPubMedGoogle Scholar
  12. 12.
    O’Callaghan CH, Morris A, Kirby SM, Shingler AH (1972) Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1(4):283–288PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Qian G, Pan GF, Guo JY (2012) Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res 26(24):2358–2362CrossRefPubMedGoogle Scholar
  14. 14.
    Rafalko A, Dai S, Hancock WS, Karger BL, Hincapie M (2011) Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma. J Proteome Res 11(2):808–817PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273(18):4346–4359CrossRefPubMedGoogle Scholar
  16. 16.
    Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Wu DT, Meng LZ, Wang LY, Lv GP, Cheong KL, Hu DJ, Guan J, Zhao J, Li SP (2014) Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis. Carbohydr Polym 110:405–414CrossRefPubMedGoogle Scholar
  18. 18.
    Xiang L, Song J, Xin T, Zhu Y, Shi L, Xu X, Pang X, Yao H, Li W, Chen S (2013) DNA barcoding the commercial Chinese caterpillar fungus. FEMS Microbiol Lett 347(2):156–162PubMedGoogle Scholar
  19. 19.
    Yu HM, Wang BS, Huang SC, Duh PD (2006) Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food Chem 54(8):3132–3138CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61(3):279–291CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu L, Liu X, Zheng X, Bu X, Zhao G, Xie C, Zhang J, Li N, Feng E, Wang J, Jiang Y, Huang P, Wang H (2009) Global analysis of a plasmid-cured Shigella flexneri strain: new insights into the interaction between the chromosome and a virulence plasmid. J Proteome Res 9(2):843–854CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shiwei Zhang
    • 1
  • Xintian Lai
    • 1
  • Bifang Li
    • 1
  • Cong Wu
    • 1
  • Shifeng Wang
    • 1
  • Xuejian Chen
    • 1
  • Jingmin Huang
    • 1
  • Guowu Yang
    • 1
  1. 1.Shenzhen Academy of Metrology and Quality InspectionShenzhenPeople’s Republic of China

Personalised recommendations