Current Microbiology

, Volume 71, Issue 1, pp 83–94 | Cite as

Enantioselective Microbial Hydroxylation as a Useful Tool in the Production of Jasmonate Derivatives with Aphid Deterrent Activity

  • Anna GliszczyńskaEmail author
  • Witold Gładkowski
  • Katarzyna Dancewicz
  • Beata Gabryś


Microbial transformations of two natural compounds dihydrojasmone (1) and cis-jasmone (3) in the growing cultures of selected twenty strains have been investigated. The studies have demonstrated a biocatalytic potential of tested microorganisms for the enantioselective hydroxylation of jasmonates. The substrates underwent an effective regio- and stero-selective hydroxylation at the allylic position in the cyclopentenone ring, and the corresponding optically pure keto-alcohols (2, 4) were obtained. The process of biohydroxylation depended on the composition of reaction medium. In the studied cultures, (+)-(R)-4-hydroxydihydrojasmone (2) and (+) and (−)-4-hydroxyjasmone (4a, 4b) were produced in good yields and high enantiomeric excesses. Moreover, the introduction of the hydroxy group into the molecule of jasmonate ketones 1 and 3 leads to biologically active derivatives 2 and 4 that regulate the behaviour of aphids Myzus persicae by termination of their feeding.


Biotransformation Microbial Transformation Pyrethrin Preparative Scale Hydroxyketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This Project was financed by the European Union from the European Regional Development Found Grant No. POIG.01.03.01-00-158/09-03.


  1. 1.
    Aldridge DC, Galt S, Giles D, Turner WD (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C:1623–1627Google Scholar
  2. 2.
    Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signalling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Beale MH, Ward JL (1998) Jasmonates: key players in the plant defence. Nat Prod Rep 15:533–548PubMedCrossRefGoogle Scholar
  4. 4.
    Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pey BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defence. Proc Natl Acad Sci USA 97:9329–9334PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends in Genet 19:409–413CrossRefGoogle Scholar
  6. 6.
    Crabalona L (1967) Presence of leavorotatory methyl jasmonate, methyl cis-2(2-penten-1-yl)-3-oxocyclopentenyl acetate, in the essential oil Tunisian rosemary C. R Acad Sci 264:2074–2076Google Scholar
  7. 7.
    Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381PubMedCrossRefGoogle Scholar
  8. 8.
    Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (-)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 155:530–535CrossRefGoogle Scholar
  9. 9.
    Dathe W, Schindler C, Schneider G, Schmidt J, Porzel A, Jensen E, Yamaguchi I (1991) Cucurbic acid and its 6,7-stereoisomers. Phytochemistry 30:1909–1914CrossRefGoogle Scholar
  10. 10.
    Demole E, Lederer E, Mercier D (1962) Isolement et determination de la structure du jasmonate de methyle, constituent odorant caracteristique de l’essence de jasmine. Helv Chim Acta 45:675–685CrossRefGoogle Scholar
  11. 11.
    Farmer EE (1994) Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol 26:1423–1437PubMedCrossRefGoogle Scholar
  12. 12.
    Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Fukui H, Koshimizu K, Yamazaki Y, Usuda S (1977) Structures of plant growth regulators from seeds of Cucurbita pepo L. Agric Boil Chem 41:189–194CrossRefGoogle Scholar
  14. 14.
    Gliszczyńska A, Łysek A, Janeczko T, Świtalska M, Wietrzyk J, Wawrzeńczyk C (2011) Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites. Bioorg Med Chem 19:2464–2469PubMedCrossRefGoogle Scholar
  15. 15.
    Gliszczyńska A, Wawrzeńczyk C (2008) Oxidative biotransformation of farnesol and 10,11-epoxyfarnesol by fungal strains. J Mol Catal B-Enzym 52–53:40–48CrossRefGoogle Scholar
  16. 16.
    Grimes HD, Koetje DS, Franceschi VR (1992) Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol 100:433–443PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gundlach H, Muller MJ, Kutchan T, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cel cultures. Proc Natl Acad Sci USA 89:2389–2393PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hardie J, Holyoak M, Taylor NJ, Griffiths DC (1992) The combination of electronic monitoring and video-assisted observations of plant penetration by aphids and behavioural effect of polygodial. Entomol Exp Appl 62:233–239CrossRefGoogle Scholar
  19. 19.
    Hill RK, Edwards AG (1965) The absolute configuration of methyl jasmonate. Tetrahedron 21:1501–1507CrossRefGoogle Scholar
  20. 20.
    Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650PubMedCrossRefGoogle Scholar
  21. 21.
    Masayoshi M, Tadashi K (1984) Eur Pat Appl EP 115860(A2):19840815Google Scholar
  22. 22.
    Miersch O, Brückner B, Schmidt J, Sembdner G (1992) Cyclopentane fatty acids from Gibberella fujikuroi. Phytochemistry 31:3835–3837CrossRefGoogle Scholar
  23. 23.
    Miersch O, Meyer A, Vorkfield S, Sembdner G (1986) Occurrence of (+)-7-iso-jasmonic acid in Vicia faba L. and its biological activity. J Plant Growth Reg 5:91–100CrossRefGoogle Scholar
  24. 24.
    Miersch O, Sembdner G, Schreiber K (1998) Occurrence of jasmonic acid analogues in Vicia faba. Phytochemistry 28:339–340CrossRefGoogle Scholar
  25. 25.
    Morkunas I, Mai VC, Gabryś B (2011) Expression profiling of selected glutathione transferase genes in Zea mays (L) seedlings infested with cereal aphids. Acta Physiol Plant 33:2057–2073CrossRefGoogle Scholar
  26. 26.
    Parthier B (1990) Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9:57–63CrossRefGoogle Scholar
  27. 27.
    Pinheiro L, Marsaioli AJ (2007) Microbial monooxygenases applied to fragrance compounds. J Mol Catal B-Enzym 44:78–86CrossRefGoogle Scholar
  28. 28.
    Pinheiro L, Oliveira LGD, Marsaioli AJ (2009) Assessing the absolute configuration of (7S, 8R)-epoxyjasmone. J Mol Catal B-Enzym 60:133–137CrossRefGoogle Scholar
  29. 29.
    Popova LP, Tsonew TD, Vaklinova SG (1988) Changes in some photosynthetic and photorespiratory properties in barley leaves after treatment with methyl jasmonate. J Plant Physiol 132:257–261CrossRefGoogle Scholar
  30. 30.
    Ranjan R, Lewak S (1992) Jasmonic acid promotes germination and lipase activity in non-stratified apple embryos. Physiol Plant 86:335–339CrossRefGoogle Scholar
  31. 31.
    Rohwer CL, Erwin JE (2008) Horticultural applications of jasmonates: a review. J Hortic Sci Biotechnol 83:283–304Google Scholar
  32. 32.
    Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589CrossRefGoogle Scholar
  33. 33.
    Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substrate from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Yamane H, Takagi H, Abe H, Yokota T, Takahashi N (1981) Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol 22:689–697Google Scholar
  35. 35.
    Yoshihara T, Omer EA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Boil Chem 53:2835–2837CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anna Gliszczyńska
    • 1
    Email author
  • Witold Gładkowski
    • 1
  • Katarzyna Dancewicz
    • 2
  • Beata Gabryś
    • 2
  1. 1.Department of ChemistryWrocław University of Environmental and Life SciencesWrocławPoland
  2. 2.Department of Biology and EcologyUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations