Current Microbiology

, Volume 71, Issue 2, pp 220–228 | Cite as

Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review

  • Jianliang Xue
  • Yang Yu
  • Yu Bai
  • Liping WangEmail author
  • Yanan Wu


Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61–66, 2001). This review introduces an important remedial method for marine oil pollution treatment—bioremediation technique—which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.


PAHs Petroleum Hydrocarbon Cycloalkane Petroleum Compound Petroleum Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51408347 and 21307149), the Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, SOA (Grant No. 201407), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2014RCJJ018), and the excellent young and middle-aged scientists of Shandong Province (Grant No. BS2013NJ019). Liping Wang was supported by NHMRC Grant (1094606).


  1. 1.
    Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14CrossRefGoogle Scholar
  2. 2.
    Al-Mailem DM, Sorkhoh NA, Marafie M et al (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101:5786–5792PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson CM, LaBelle RP (2000) Update of comparative occurrence rates for offshore oil spills. Spill Sci Technol Bull 6:303–321CrossRefGoogle Scholar
  4. 4.
    Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. J Appl Microbiol 30:396–403Google Scholar
  5. 5.
    Atlas RM (1985) Effects of hydrocarbons on microorganisms and biodegradation in Arctic ecosystems. Elsevier, LondonGoogle Scholar
  6. 6.
    Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182CrossRefGoogle Scholar
  7. 7.
    Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not—The Exxon Valdez experience. Microb Biotechnol 2:213–221PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bachmann RT, Johnson AC, Edyvean RG (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation 86:225–237CrossRefGoogle Scholar
  9. 9.
    Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266PubMedCrossRefGoogle Scholar
  10. 10.
    Bao MT, Wang LN, Sun PY et al (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 64:1177–1185PubMedCrossRefGoogle Scholar
  11. 11.
    Brakstad OG, Daling PS, Liv-G Faksness et al (2014) Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar Pollut Bull 84:125–134PubMedCrossRefGoogle Scholar
  12. 12.
    Boguslawska-WOpen image in new windows E, DOpen image in new windowbrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203:451–458Google Scholar
  13. 13.
    Blumer M, Ehrhardt M, Jones JH (1973) The environmental fate of stranded crude oil. Deep-Sea Research and Oceanographic Abstracts 20:239–259CrossRefGoogle Scholar
  14. 14.
    Bagi A, Pampanin DM, Lanzén A et al (2014) Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25:111–125PubMedCrossRefGoogle Scholar
  15. 15.
    Chaîneau CH, Rougeux G, Yéprémian C et al (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497CrossRefGoogle Scholar
  16. 16.
    Chaillan F, Chaîneau CH, Point V et al (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144:255–265PubMedCrossRefGoogle Scholar
  17. 17.
    Chelsea S, William TS, Terry CH et al (2013) Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environ Pollut 173:224–230CrossRefGoogle Scholar
  18. 18.
    Choi SC, Kwon KK, Sohn JH, Kim SJ (2002) Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms. J Microbiol Biotechnol 12:431–436Google Scholar
  19. 19.
    Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445CrossRefGoogle Scholar
  20. 20.
    Das N, Chandran P (2011) microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 13:1–13Google Scholar
  21. 21.
    Díez S, Jover E, Bayona JM et al (2007) Prestige oil spill. III. Fate of a heavy oil in the marine environment. Environ Sci Technol 41:3075–3082PubMedCrossRefGoogle Scholar
  22. 22.
    Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Dyksterhouse SE, Gray JP, Herwig RP et al (1995) Cycloclasticus pugetii gen. nov., sp. nov., an Aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123PubMedCrossRefGoogle Scholar
  24. 24.
    Fingas MF (1995) A literature review of the physics and predictive modelling of oil spill evaporation. J Hazard Mater 42:157–175CrossRefGoogle Scholar
  25. 25.
    Gallego S, Vila J, Tauler M et al (2013) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation. doi: 10.1007/s10532-013-9680-z PubMedGoogle Scholar
  26. 26.
    Giebel HA, Kalhoefer D, Lemke A et al (2011) Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J 5:8–19PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gilbert JA, Steele JA, Caporaso JG et al (2012) Field, Defining seasonal marine microbial community dynamics. ISME J 6:298–308PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Golyshin PN, Chernikova TN, Abraham WR et al (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911PubMedCrossRefGoogle Scholar
  29. 29.
    Harayama S, Kishira H, Kasai Y et al (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70PubMedGoogle Scholar
  30. 30.
    Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil, Nature reviews. Microbiology 4:173–182PubMedGoogle Scholar
  31. 31.
    Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214PubMedCrossRefGoogle Scholar
  32. 32.
    Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66PubMedGoogle Scholar
  33. 33.
    Hara A, Baik SH, Syutsubo K et al (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197PubMedCrossRefGoogle Scholar
  34. 34.
    Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753PubMedCrossRefGoogle Scholar
  35. 35.
    Harris BC, Bonner JS, McDonald TJ et al (2002) Bioavailability of chemically-dispersed crude oil. In: Proceedings of the twenty-fifth Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Calgary, AB, Canada, pp 895–905Google Scholar
  36. 36.
    Iwabuchi N, Sunairi M, Urai M et al (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Jenkins ME, Adams MA (2011) Respiratory quotients and Q10 of soil respiration in sub-alpine Australia reflect influences of vegetation types. Soil Biol Biochem 43:1266–1274CrossRefGoogle Scholar
  38. 38.
    Jiang WJ, Chen L, Batchu SR et al (2014) Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. Environ Sci Technol 48(20):12164–12172PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang WJ, Pelaez M, Dionysios D et al (2013) Chromium(VI) removal by maghemite nanoparticles. Chem Eng J 222(15):527–533CrossRefGoogle Scholar
  40. 40.
    Jones DM, Head IM, Gray ND et al (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180PubMedCrossRefGoogle Scholar
  41. 41.
    Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteriambt-130 136.164. Microb Biotechnol 3:136–164PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kasai Y, Shindo K, Harayama S et al (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from cycloclasticus sp. strain A5. Appl Environ Microbiol 69:6688–6697PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Kim SJ, Choi DH, Sim DS et al (2005) Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere 59:845–852PubMedCrossRefGoogle Scholar
  45. 45.
    Kiran GS, Hema TA, Gandhimathi R et al (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B 73:250–256CrossRefGoogle Scholar
  46. 46.
    Ko JY, Day JW (2005) A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean Coast Manag 47:597–623CrossRefGoogle Scholar
  47. 47.
    Liu SY, Zhao YP, Jiang WJ et al (2014) Inactivation of Microcystis aeruginosa by electron beam irradiation. Water Air Soil Pollut 225:2093CrossRefGoogle Scholar
  48. 48.
    Liu YC, Li LZ, Wu Y et al (2010) Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresour Technol 101:310–316PubMedCrossRefGoogle Scholar
  49. 49.
    Mills MA, Bonner JS, Page CA et al (2004) Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar Pollut Bull 49:425–435PubMedCrossRefGoogle Scholar
  50. 50.
    Mnif S, Sayadi S, Chamkha M (2014) Biodegradative potential and characterization of a novel aromatic-degrading bacterium isolated from a geothermal oil field under saline and thermophilic conditions. Int Biodeterior Biodegradation 86:258–264CrossRefGoogle Scholar
  51. 51.
    Oropesa AL, Pérez-López M, Hernández D et al (2007) Acetylcholinesterase activity in seabirds affected by the Prestige oil spill on the Galician coast (NW Spain). Sci Total Environ 372:532–538PubMedCrossRefGoogle Scholar
  52. 52.
    Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125CrossRefGoogle Scholar
  53. 53.
    Page CA, Bonner JS, Sumner PL et al (2000) Behavior of a chemically-dispersed oil and a whole oil on a near-shore environment. Water Res 34:2507–2516CrossRefGoogle Scholar
  54. 54.
    Pasumarthi R, Chandrasekaran S, Mutnuri S (2013) Biodegradation of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan coast. Mar Pollut Bull 76:276–282PubMedCrossRefGoogle Scholar
  55. 55.
    Peng GW, Yang GX, Liu XC et al (2008) Isolation of a bacteria strain degrading crude oil and its degradation characteristics Chemical industry and engineering progress 27(531–534):557Google Scholar
  56. 56.
    Poland JS, Riddle MJ, Zeeb BA (2003) Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Record 39:369–383CrossRefGoogle Scholar
  57. 57.
    Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Pritchard PH (1991) EPA ‘s Alaska oil spill bioremediation project. Environ Sci Technol 25:372–379CrossRefGoogle Scholar
  59. 59.
    Prince RC, McFarlin KM, Butler JD et al (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526PubMedCrossRefGoogle Scholar
  60. 60.
    Meckenstock Rainer U (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36PubMedCrossRefGoogle Scholar
  61. 61.
    Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11:1692–1703PubMedCrossRefGoogle Scholar
  62. 62.
    Rontani JF, Bosser-Joulak F, Rambeloarisoa E (1985) Analytical study of Asthart crude oil asphaltenes biodegradation. Chemosphere 14:1413–1422CrossRefGoogle Scholar
  63. 63.
    Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38(6):1331–1337PubMedCrossRefGoogle Scholar
  64. 64.
    Shi J, Chen Z, Hu X et al (2000) The effects of petroleum-degrading bacteria on the n-alkanes. Donghai Mar Sci 18:21–27Google Scholar
  65. 65.
    Singer ME, Finnerty WR (1984) Microbial Metabolism of Straight-Chain and Branched Alkanes. Macmillan Publishing Co., New YorkGoogle Scholar
  66. 66.
    Singh H (2006) Mycoremediation: Fungal Bioremediation. John Wiley & Sons, New JerseyCrossRefGoogle Scholar
  67. 67.
    Soddell JA, Stainsby FM, Eales KL et al (2006) Gordonia def luvii sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56:2265–2269PubMedCrossRefGoogle Scholar
  68. 68.
    Staley JT (2010) Cycloclasticus: a genus of marine polycyclic aromatic hydrocarbon degrading bacteria. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg, pp 1782–1785Google Scholar
  69. 69.
    Swannell RPJ, Mitchell D, Lethbridge G et al (1999) A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ Technol 20:863–873CrossRefGoogle Scholar
  70. 70.
    Torres MA, Barros MP, Campos SCG et al (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15PubMedCrossRefGoogle Scholar
  71. 71.
    Venosa AD, Suidan MT, Wrenn BA et al (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775CrossRefGoogle Scholar
  72. 72.
    Vila J, López Z, Sabaté J et al (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Wang Y, Lau PCK, Button DK (1996) A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl Environ Microbiol 62:2169–2173PubMedCentralPubMedGoogle Scholar
  74. 74.
    Yakimov MM, Giuliano L, Gentile G et al (2003) Golyshin, Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785PubMedCrossRefGoogle Scholar
  75. 75.
    Yakimov MM, Golyshin PN, Lang S et al (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348PubMedCrossRefGoogle Scholar
  76. 76.
    Yassine MH, Suidan MT, Venosa AD (2013) Microbial kinetic model for the degradation of poorly soluble organic materials. Water Res 47:1585–1595PubMedCrossRefGoogle Scholar
  77. 77.
    Yuan HL, Yang JS, Wang ZS et al (2003) Microorganism screening for petroleum degradation and degrading characteristics. China Environmental Science 23:157Google Scholar
  78. 78.
    Yumoto I, Nakamura A, Iwata H et al (2002) A novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90PubMedGoogle Scholar
  79. 79.
    Zhang JL, Li ZY, Wang L et al (2003) Biological degradation of crude oil in seawater. J Univ Sci Technol Beijing 25:410–413Google Scholar
  80. 80.
    Zhang ZE, Yan YF, Zhang L et al (2014) Hollow fiber membrane contactor absorption of CO2 from the flue gas: review and perspective. Global NEST Journal 16(2):355–374Google Scholar
  81. 81.
    Zhang Z, Yan Y, Zhang L et al (2014) Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters. Ind Eng Chem Res 53(36):14075–14083CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jianliang Xue
    • 1
  • Yang Yu
    • 2
  • Yu Bai
    • 3
  • Liping Wang
    • 4
    Email author
  • Yanan Wu
    • 1
  1. 1.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Laboratory Technician, Citic Pacific Mining Management Pty LtdKarrathaAustralia
  3. 3.Key Laboratory of Environmental Aquatic ChemistryResearch Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijingChina
  4. 4.Sansom Institute for Health Research, School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations