Current Microbiology

, Volume 70, Issue 5, pp 716–723 | Cite as

ClpP Affects Biofilm Formation of Streptococcus mutans Differently in the Presence of Cariogenic Carbohydrates Through Regulating gtfBC and ftf

  • Jia-qin Zhang
  • Xiang-hua Hou
  • Xiu-yu Song
  • Xiao-bo Ma
  • Yuan-xun Zhao
  • Shi-yang Zhang


The abilities to form biofilms on teeth surface and to metabolize a wide range of carbohydrates are key virulence attributes of Streptococcus mutans. ClpP has been proved to play an important role in biofilm development in streptococci. Here we demonstrated that ClpP was involved in biofilm formation of S. mutans. ClpP inactivation resulted in enhanced biofilm formation or initial cell adherence in broth supplemented with sucrose, while reduced in broth supplemented with glucose or fructose. Our results also indicated that the enhanced capacities of biofilm formation and initial cell adherence were achieved through regulating the expression of a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB and GTFC) at early-exponential growth phase and fructosyltransferase at late-exponential growth phase in the presence of sucrose.



The authors would like to thank S. Hou for technical assistance and Q. Xu and H. Rao for critically reading the manuscript. This work was supported through funding from the National Natural Science Foundation of China (No. 81000762), the Natural Science Foundation (No. 2010D018) of Fujian Province, China.

Conflict of interest

The authors have no conflicts of interest to declare.


  1. 1.
    Chattoraj P, Banerjee A, Biswas S, Biswas I (2010) ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol 192(5):1312–1323CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59(10):1607–1616CrossRefPubMedGoogle Scholar
  3. 3.
    Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899CrossRefPubMedGoogle Scholar
  4. 4.
    Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44(2):331–384PubMedCentralPubMedGoogle Scholar
  5. 5.
    Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581CrossRefPubMedGoogle Scholar
  6. 6.
    Horaud T, Delbos F (1984) Viridans streptococci in infective endocarditis: species distribution and susceptibility to antibiotics. Eur Heart J 5(Suppl C):39–44CrossRefPubMedGoogle Scholar
  7. 7.
    Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ (2005) Contribution of the ATP-Dependent Protease ClpCP to the Autolysis and Virulence of Streptococcus pneumoniae. Infect Immun 73(2):730–740CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Kajfasz JK, Martinez AR, Rivera-Ramos I, Abranches J, Koo H, Quivey RG Jr, Lemos JA (2009) Role of Clp proteins in expression of virulence properties of Streptococcus mutans. J Bacteriol 191(7):2060–2068CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52(5):782–789CrossRefPubMedGoogle Scholar
  10. 10.
    Kuramitsu HK, Wang BY (2006) Virulence properties of cariogenic bacteria. BMC Oral Health 6(Suppl 1):S11CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Lemos JA, Burne RA (2002) Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184(22):6357–6366CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Lemos JA, Burne RA (2008) A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology 154(Pt 11):3247–3255CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380PubMedCentralPubMedGoogle Scholar
  14. 14.
    Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496CrossRefPubMedGoogle Scholar
  15. 15.
    Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ESC, Siddiqui SM, Wah DA, Baker TA (2004) Sculpting the proteome with AAA + proteases and disassembly machines. Cell 119(1):9–18CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Senadheera MD, Guggenheim B, Spatafora GA, Huang YC, Choi J, Hung DC, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187(12):4064–4076CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Shemesh M, Tam A, Feldman M, Steinberg D (2006) Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 341(12):2090–2097CrossRefPubMedGoogle Scholar
  18. 18.
    Shemesh M, Tam A, Steinberg D (2007) Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol 56(Pt 11):1528–1535CrossRefPubMedGoogle Scholar
  19. 19.
    Tam A, Shemesh M, Wormser U, Sintov A, Steinberg D (2006) Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. J Antimicrob Chemother 57(5):865–871CrossRefPubMedGoogle Scholar
  20. 20.
    Tamesada M, Kawabata S, Fujiwara T, Hamada S (2004) Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res 83(11):874–879CrossRefPubMedGoogle Scholar
  21. 21.
    Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187(18):6571–6576CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Yousefi B, Ghaderi S, Rezapoor-Lactooyi A, Amiri N, Verdi J, Shoae-Hassani A (2012) Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces. Ann Clin Microbiol Antimicrob 11:21CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Zhang J, Banerjee A, Biswas I (2009) Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans. J Bacteriol 191(3):1056–1065CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jia-qin Zhang
    • 1
    • 2
  • Xiang-hua Hou
    • 3
  • Xiu-yu Song
    • 1
  • Xiao-bo Ma
    • 1
  • Yuan-xun Zhao
    • 1
  • Shi-yang Zhang
    • 2
    • 4
  1. 1.Department of Clinical LaboratoryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
  2. 2.Nosocomial Infection Control Center of XiamenXiamenChina
  3. 3.Department of NephrologyThe First Affiliated Hospital of Xiamen UniversityXiamenChina
  4. 4.Department of Nosocomial Infection ControlThe First Affiliated Hospital of Xiamen UniversityXiamenChina

Personalised recommendations