Advertisement

Current Microbiology

, Volume 70, Issue 2, pp 212–218 | Cite as

Mycobacterium Genotypes in Pulmonary Tuberculosis Infections and Their Detection by Trained African Giant Pouched Rats

  • Georgies F. Mgode
  • Stéphan Cohen-Bacrie
  • Marielle Bedotto
  • Bart J. Weetjens
  • Christophe Cox
  • Maureen Jubitana
  • Dian Kuipers
  • Robert S. Machang’u
  • Rudovick Kazwala
  • Sayoki G. Mfinanga
  • Stefan H. E. KaufmannEmail author
  • Michel Drancourt
Article

Abstract

Tuberculosis (TB) diagnosis in low-income countries is mainly done by microscopy. Hence, little is known about the diversity of Mycobacterium spp. in TB infections. Different genotypes or lineages of Mycobacterium tuberculosis vary in virulence and induce different inflammatory and immune responses. Trained Cricetomys rats show a potential for rapid diagnosis of TB. They detect over 28 % of smear-negative, culture-positive TB. However, it is unknown whether these rats can equally detect sputa from patients infected with different genotypes of M. tuberculosis. A 4-month prospective study on diversity of Mycobacterium spp. was conducted in Dar es Salaam, Tanzania. 252 sputa from 161 subjects were cultured on Lowenstein-Jensen medium and thereafter tested by rats. Mycobacterial isolates were subjected to molecular identification and multispacer sequence typing (MST) to determine species and genotypes. A total of 34 Mycobacterium spp. isolates consisting of 32 M. tuberculosis, 1 M. avium subsp. hominissuis and 1 M. intracellulare were obtained. MST analyses of 26 M. tuberculosis isolates yielded 10 distinct MST genotypes, including 3 new genotypes with two clusters of related patterns not grouped by geographic areas. Genotype MST-67, shared by one-third of M. tuberculosis isolates, was associated with the Mwananyamala clinic. This study shows that diverse M. tuberculosis genotypes (n = 10) occur in Dar es Salaam and trained rats detect 80 % of the genotypes. Sputa with two M. tuberculosis genotypes (20 %), M. avium hominissuis and M. intracellulare were not detected. Therefore, rats detect sputa with different M. tuberculosis genotypes and can be used to detect TB in resource-poor countries.

Keywords

Tuberculosis Mycobacterium Sputum Sample Mycobacterial Isolate Genotype Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank authorities of the Tanzania’s National Tuberculosis and Leprosy Programme (NTLP) and the collaborating DOTS centres in Dar es Salaam for their excellent support during this project. Support from all staff of the SUA-APOPO TB detection laboratory, and technical support from Jonas Fitwangile (Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture) is highly appreciated. We thank Mary Louise Grossman for help preparing the manuscript. Funding by the UBS Optimus Foundation (UBS) to S.H.E.K. and B.J.W. is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest regarding this work.

References

  1. 1.
    Adekambi T, Colson P, Drancourt M (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41:5699PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Cayrou C, Turenne C, Behr MA, Drancourt M (2010) Genotyping of Mycobacterium avium complex organisms using multispacer sequence typing. Microbiology 156:687–694PubMedCrossRefGoogle Scholar
  3. 3.
    Coscolla M, Gagneux S (2010) Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7(1):e43–e59PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Crump JA, Ramadhani HO, Morrissey AB et al (2011) Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected adults and adolescents in northern Tanzania. Clin Infect Dis 52:341–348PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Crump JA, van Ingen J, Morrissey AB et al (2009) Invasive disease caused by nontuberculous mycobacteria, Tanzania. Emerg Infect Dis 15:53–55PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Djelouadji Z, Arnold C, Gharbia S, Raoult D, Drancourt M (2008) Multispacer sequence typing for Mycobacterium tuberculosis genotyping. PLoS ONE 3:e2433PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Djelouadji Z, Orehek J, Drancourt M (2009) Rapid detection of laboratory cross-contamination with Mycobacterium tuberculosis using multispacer sequence typing. BMC Microbiol 9:47PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Eldholm V, Matee M, Mfinanga SGM et al (2006) A first insight into the genetic diversity of Mycobacterium tuberculosis in Dar es Salaam, Tanzania, assessed by spoligotyping. BMC Microbiol 6(1):76PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Garton NJ, Waddell SJ, Sherratt AL et al (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5(4):e75PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Matee M, Mtei L, Lounasvaara T et al (2008) Sputum microscopy for the diagnosis of HIV-associated pulmonary tuberculosis in Tanzania. BMC Pub Health 8:68CrossRefGoogle Scholar
  11. 11.
    Mgode GF, Weetjens BJ, Nawrath T et al (2012) Diagnosis of tuberculosis by trained African giant pouched rats and confounding impact of pathogens and microflora of the respiratory tract. J Clin Microbiol 50(2):274–280PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mgode GF, Weetjens BJ, Nawrath T et al (2012) Mycobacterium tuberculosis volatiles for diagnosis of tuberculosis by Cricetomys rats. Tuberc (Edinb) 92(6):535–542CrossRefGoogle Scholar
  13. 13.
    Mihret A, Bekele Y, Loxton AG et al (2012) Plasma level of IL-4 differs in patients infected with different modern lineages of M. tuberculosis. J Trop Med 2012:518564Google Scholar
  14. 14.
    Mukamolova GV, Turapov O, Malkin J et al (2010) Resuscitation promoting factors reveal an occult population of tubercle bacilli in sputum. Am J Resp Crit Care Med 181:174–180PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Perkins MD, Cunningham J (2007) Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis 196:15–27CrossRefGoogle Scholar
  16. 16.
    Pfyffer G (2007) Mycobacterium: general characteristics, laboratory detection and staining procedures. In: Murray PR, Barron EJ, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of clinical microbiology. ASM Press, Washington, DC, pp 543–572Google Scholar
  17. 17.
    Poling A, Weetjens BJ, Cox C et al (2010) Using giant African pouched rats to detect tuberculosis in human sputum samples: 2009 findings. Am J Trop Med Hyg 83:1308–1310PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Richardson ET, Samson D, Banaei N (2009) Rapid identification of Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex real-time PCR. J Clin Microbiol 47:1497–1502PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Shrestha NK, Tuohy MJ, Hall GS et al (2003) Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. J Clin Microbiol 41:5121–5126PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Urbanczik R (1985) Present position of microscopy and of culture in diagnostic mycobacteriology. Zentralblatt für Bakteriol. Mikrobiol Hyg (A) 260:81–87Google Scholar
  21. 21.
    Weetjens BJ, Mgode GF, Machang’u RS et al (2009) African pouched rats for the detection of pulmonary tuberculosis in sputum samples. Int J Tuberc Lung Dis 13:1–7Google Scholar
  22. 22.
    World Health Organization (1998) Laboratory services in tuberculosis control part III culture, Global Tuberculosis Programme. WHO, Geneva, p 18Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Georgies F. Mgode
    • 1
    • 2
  • Stéphan Cohen-Bacrie
    • 3
  • Marielle Bedotto
    • 3
  • Bart J. Weetjens
    • 4
  • Christophe Cox
    • 4
  • Maureen Jubitana
    • 4
  • Dian Kuipers
    • 4
  • Robert S. Machang’u
    • 2
  • Rudovick Kazwala
    • 5
  • Sayoki G. Mfinanga
    • 6
  • Stefan H. E. Kaufmann
    • 1
    Email author
  • Michel Drancourt
    • 3
  1. 1.Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
  2. 2.Pest Management CentreSokoine University of AgricultureMorogoroTanzania
  3. 3.URMITE UMR CNRS 6236, IRD 198, Méditerranée InfectionAix-Marseille University, INSERM 1095MarseilleFrance
  4. 4.Anti-Persoonmijnen Ontmijnende Product Ontwikelling (APOPO vzw)AntwerpBelgium
  5. 5.Department of Veterinary Medicine and Public HealthSokoine University of AgricultureMorogoroTanzania
  6. 6.National Institute for Medical Research (NIMR), Muhimbili Medical Research CentreDar es SalaamTanzania

Personalised recommendations