Advertisement

Current Microbiology

, Volume 69, Issue 6, pp 824–831 | Cite as

Presence of fimH, mrkD, and irp2 Virulence Genes in KPC-2-Producing Klebsiella pneumoniae Isolates in Recife-PE, Brazil

  • Rita de Cássia Andrade Melo
  • Emmily Margate Rodrigues de Barros
  • Noel Guedes Loureiro
  • Heloísa Ramos Lacerda de Melo
  • Maria Amélia Vieira Maciel
  • Ana Catarina Souza Lopes
Article

Abstract

Klebsiella pneumoniae strains can produce different virulence factors, such as fimbrial adhesins and siderophores, which are important in the colonization and development of the infection. The aims of this study were to determine the occurrence of fimH, mrkD, and irp2 virulence genes in 22 KPC-2-producing K. pneumoniae isolates as well as 22 not producing-KPC isolates, from patients from different hospitals in Recife-PE, Brazil, and also to analyze the clonal relationship of the isolates by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The genes were detected by PCR and DNA sequencing. The bla KPC-2 gene was identified in 22 KPC-positive isolates. On analyzing the antimicrobial susceptibility profile of the isolates, it was detected that polymyxin and amikacin were the antimicrobials of best activity against K. pneumoniae. On the other hand, five isolates exhibited resistance to polymyxin. In the KPC-positive group, was observed a high rate of resistance to cephalosporins, followed by carbapenems. Molecular typing by ERIC-PCR detected 38 genetic profiles, demonstrating a multiclonal spread of the isolates analyzed. It was observed that the virulence genes irp2, mrkD, and fimH were seen to have together a higher frequency in the KPC-positive group. The accumulation of virulence genes of KPC-positive K. pneumoniae isolates, observed in this study, along with the multi-resistance impose significant therapeutic limitations on the treatment of infections caused by K. pneumoniae.

Keywords

Virulence Gene Colistin Carbapenems Polymyxin AmpC 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bach S, De Almeida A, Carniel E (2000) The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183:289–294PubMedCrossRefGoogle Scholar
  2. 2.
    Bachman MA, Oyler JE, Burns SH et al (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79:3309–3316PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A et al (2003) Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol 52:427–433PubMedCrossRefGoogle Scholar
  4. 4.
    Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Arch Intern Med 165:1430–1435PubMedCrossRefGoogle Scholar
  5. 5.
    Cabral AB, Melo RCA, Maciel MAV et al (2012) Multidrug resistance genes, including bla KPC and bla CTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 45:572–578PubMedCrossRefGoogle Scholar
  6. 6.
    Carniel E (2001) The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect 3:561–569PubMedCrossRefGoogle Scholar
  7. 7.
    Clinical and Laboratory Standards Institute (CLSI) (2011) Performance standards for antimicrobial susceptibility testing; Twenty-first informational supplement. CLSI document M100-S21, Wayne, PA: CLSIGoogle Scholar
  8. 8.
    Dienstmann R, Picoli SU, Meyer G et al (2010) Avaliação fenotípica da enzima Klebsiella pneumoniae carbapenemase (KPC) em Enterobacteriaceae de ambiente hospitalar. J Bras Patol Med Lab 46:23–27CrossRefGoogle Scholar
  9. 9.
    Duan H, Chai T, Liu J et al (2009) Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res 109:511–517PubMedCrossRefGoogle Scholar
  10. 10.
    Ejrnæs K (2011) Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull 58:1–22Google Scholar
  11. 11.
    El Fertas-Aissani R, Messai Y, Alouache S et al (2013) Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris) 61:209–216CrossRefGoogle Scholar
  12. 12.
    Guilvout I, Mercereau-Puijalon O, Bonnefoy S et al (1993) High-molecular-weight protein 2 of Yersinia enterocolitica is homologous to AngR of Vibrio anguillarum and belongs to a family of proteins involved in nonribosomal peptide synthesis. J Bacteriol 175:5488–5504PubMedPubMedCentralGoogle Scholar
  13. 13.
    Han HL, Huang Y, Zhang MM et al (2012) Clinical analysis of early postoperative pulmonary infection in children after living donor liver transplantation. Zhonghua Er Ke Za Zhi 50:612–616PubMedGoogle Scholar
  14. 14.
    Ktari S, Arlet G, Mnif B et al (2006) Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian University Hospital. Antimicrob Agents Chemother 50:4198–4201PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Langstraat J, Bohse M, Clegg S (2001) Type 3 Fimbrial (mrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (mrkD), facilitates biofilm formation. Infect Immun 69:5805–5812PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lawlor MS, O’Connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infections. Infect Immun 75:1463–1472PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Leavitt A, Chmelnitsky I, Colodner R et al (2009) Ertapenem resistance among extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates. J Clin Microbiol 47:969–974PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Mamina C, Bonura C, Di Bernardo F et al (2012) Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2001. Euro Surveill 17:20248Google Scholar
  19. 19.
    Monteiro J, Santos AF, Asensi MD et al (2009) First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother 53:333–334PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Peirano G, Seki L, Passos VLV et al (2009) Carbapenem-hydrolysing beta-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother 63:265–268PubMedCrossRefGoogle Scholar
  21. 21.
    Pereira PS, Araújo CFM, Seki LM et al (2012) Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: spread of clonal complex 11(ST11, ST437 and ST340). J Antimicrob Chemother 68:312–316PubMedCrossRefGoogle Scholar
  22. 22.
    Pfaller MA, Acar J, Jones RN et al (2001) Integration of molecular characterization of microorganisms in a global antimicrobial resistance surveillance program. Clin Infect Dis 32:156–167CrossRefGoogle Scholar
  23. 23.
    Podschun R, Fischer A, Ullman U (2000) Characterization of Klebsiella terrigena strains from humans: haemagglutinins, serum resistance, siderophore synthesis, and serotypes. Epidemiol Infect 125:71–78PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Podschun R, Fischer A, Ullman U (2000) Expression of putative virulence factors by clinical isolates of Klebsiella planticola. J Med Microbiol 49:115–119PubMedGoogle Scholar
  25. 25.
    Ramos PIV, Picão RC, Almeida LGP et al (2014) Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 15:54PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sahly H, Navon-Venezia S, Roesler L et al (2008) Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae. Antimicrob Agents Chemother 52:3029–3034PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Santos DF, Pimenta FC, Alves R et al (2008) Extended-spectrum β-lactamases producing Klebsiella pneumoniae isolated in two hospitals in Goiânia/Brazil: detection, prevalence, antimicrobial susceptibility and molecular typing. Braz J Microbiol 39:608–612PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Schjørring S, Struve C, Krogfelt KA (2008) Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J Antimicrob Chemother 62:1086–1093PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Schubert S, Cuenca S, Fisher D et al (2000) High-pathogenicity island of Yersinia pestis in Enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J Infect Dis 182:1268–1271PubMedCrossRefGoogle Scholar
  31. 31.
    Souza Lopes AC, Rodrigues JF, Morais Júnior MA (2005) Molecular typing of Klebsiella pneumoniae isolates from public hospitals in Recife, Brazil. Microbiol Res 160:37–46PubMedCrossRefGoogle Scholar
  32. 32.
    Stahlhut SG, Chattopadhyay S, Struve C et al (2009) Population variability of the fimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191:1941–1950PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Struve C, Bojer M, Krogfelt KA (2009) Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77:5016–5024PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tosin I, Silbert S, Sader HS (2003) The use of molecular typing to evaluate the dissemination of antimicrobial resistance among Gram-negative rods in Brazilian Hospitals. Braz J Infect Dis 7:360–369PubMedCrossRefGoogle Scholar
  35. 35.
    Vaara M, Sader HS, Rhomberg PR et al (2012) Antimicrobial activity of the novel polymyxin derivative NAB739 tested against Gram-negative pathogens. J Antimicrob Chemother 68:636–639PubMedCrossRefGoogle Scholar
  36. 36.
    Wallace KMP, Bethel CR, Destler AM et al (2010) Inhibitor resistance in the KPC-2 β-lactamases, a preeminent property of this class A β-lactamases. Antimicrob Agents Chemother 54:890–897CrossRefGoogle Scholar
  37. 37.
    Wilson JW, Schurr MJ, LeBlanc CL et al (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–224PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Woodford N, Dallow JW, Hill RL et al (2007) Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents 29:456–459PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rita de Cássia Andrade Melo
    • 1
  • Emmily Margate Rodrigues de Barros
    • 1
  • Noel Guedes Loureiro
    • 1
  • Heloísa Ramos Lacerda de Melo
    • 2
  • Maria Amélia Vieira Maciel
    • 1
  • Ana Catarina Souza Lopes
    • 1
  1. 1.Departamento de Medicina TropicalUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Clínica MédicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations